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METHOD AND APPARATUS FOR A
BATTERY STATE OF CHARGE ESTIMATOR

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the implementation of a
battery State of Charge (SOC) estimator.

2. Background Art

Batteries are used in a wide variety of electronic and
electrical devices. In each application, it is often useful and
necessary to measure how much charge is left in the battery.
Such a measurement is called the State of Charge (SOC). It
is useful, for example, for a cell phone user to know how
much longer he can talk on his phone. On the other hand,
recharging devices need to know how much charge is in a
battery to prevent overcharging. Many types of battery are
sensitive to overcharging as well as undercharging. Over-
charging and undercharging can erode the effectiveness of
batteries and even damage them.

Currently there are many techniques that measure the
remaining charge of a battery. Each of these SOC determi-
nation techniques has drawbacks. Some such as Ampere-
hour counting are sensitive to measurement errors. Others
such as Coup de fouet work for only One type of battery.
Still other techniques such as Impedance Spectroscopy are
constrained by battery conditions such as rapidly changing
temperature. Also many do not give an uncertainty range in
their estimation of the SOC. In applications such as HEV
and EV batteries, the uncertainty range associated with the
SOC measurement is very critical. Vehicles can lose power
on the road and cause danger if the uncertainty range is
unknown and the battery is erroneously undercharged.
Knowing the uncertainty range can prevent this. For
example if the battery SOC is determined to be within 10%
of the minimum charge threshold and the uncertainty range
is known to be 15%, the system will know to charge the
battery because the uncertainty range is greater than the
distance to the threshold.

Existing Techniques

Presented here is an overview of the existing techniques
and some of their shortcomings. One technique called the
discharge test is an accurate form of testing. It involves
completely discharging the battery to determine the SOC
under controlled conditions. However, the complete dis-
charge requirement renders this test impractical for real-life
application. It is too time consuming to be useful and
interrupts system function while the test is being performed.

Another SOC determination technique is called Ampere-
hour counting. This is the most common technique for
determining the SOC because of its ease of implementation.
It measures the current of the battery and uses the measure-
ment to determine what the SOC is. Ampere-hour counting
uses the following:

1 1
S0C = 50C, + —f Upar = lpss) A1 o
Cn Jo

where C, is the rated capacity of the battery, I,,,, is the
battery current, and I, is the current consumed by the loss
reactions. The equation determines the SOC based on an
initial SOC, starting point. Ampere-hour counting is essen-
tially an “open loop” method that is easily confused. Mea-
surement error accumulates over time to degrade the accu-
racy of SOC determination. There are methods to improve
current measurement but they are expensive.

Electrolyte Measurement is another common technique.
In lead-acid batteries, for example, the electrolyte takes part
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in reactions during charge and discharge. Thus, a linear
relationship exists between the change in acid density and
the SOC. Therefore measuring the electrolyte density can
yield an estimation of the SOC. The density is measured
directly or indirectly by ion-concentration, conductivity,
refractive index, viscosity, etc. However, this technique is
only feasible for vented lead-acid batteries. Furthermore it is
susceptible to acid stratification in the battery, water loss and
long term instability of the sensors.

An open-circuit voltage measurement may be performed
to test the SOC of the battery. Although the relationship
between the open circuit voltage and the SOC is non-linear,
it may be determined via lab testing. Once the relationship
is determined, the SOC can be determined by measuring the
open circuit voltage. However the measurement and esti-
mation are accurate only when the battery is at a steady state,
which can be achieved only after a long period of inactivity.
This makes the open-circuit voltage technique impractical
for dynamic real time application.

Impedance Spectroscopy is another technique used to
determine the SOC. Impedance spectroscopy has a wide
variety of applications in determining the various charac-
teristics of batteries. Impedance Spectroscopy exploits a
relationship between battery model parameters derived from
impedance spectroscopy measurements and the SOC. How-
ever the drawback of this technique is that impedance curves
are strongly influenced by temperature effects. Thus its
application is limited to applications where temperature is
stable.

Internal resistance is a technique related to impedance
spectroscopy. Internal resistance is calculated as the voltage
drop divided by the current change during the same time
interval. The time interval chosen is critical because any
time interval longer than 10 ms will result in a more complex
resistance measurement. Measurement of internal resistance
is very sensitive to measurement accuracy. This requirement
is especially difficult to achieve in Hybrid Electric Vehicle
(HEV) and Electric Vehicle (EV) applications.

Some techniques use non-linear modeling to estimate
SOC directly from measurements. An example is artificial
neural networks. Artificial neural networks operate on any
system and predict the relationship between input and out-
put. The networks have to be trained repeatedly so that it can
improve its estimation. Because the accuracy of the data is
based on the training program for the networks, it is difficult
to determine the error associated with the SOC prediction
given by artificial neural networks.

There is another group of SOC estimation techniques
called the interpretive techniques. Interpretive techniques do
not give SOC directly. Instead they use electrical discharge
and charge characteristics to determine the SOC. As such,
the SOC must be inferred from the calculated values. One of
these techniques is called the Coup de fouet. Coup de fouet
describes the short voltage drop region occurring at the
beginning of discharge following a full charge of lead-acid
battery. Using a special correlation between the voltage
parameters occurring in this Coup de fouet region, the SOC
can be inferred. One limitation of the Coup de fouet tech-
nique is that it works for lead-acid batteries only. Moreover
it is effective only in cases where full charge is frequently
reached during battery operations.

The Kalman Filter

One SOC determination technique involves mathemati-
cally modeling the behavior of the battery and predicting the
SOC based on the model. One such model is the Kalman
filter. It has mathematical basis in statistics, probabilities and
system modeling. The main purpose of the Kalman filter is
to predict recursively the internal states of a dynamic system
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using only the system’s outputs. In many instances this is
very useful because the internal states of the system are
unknown or cannot be directly measured. As such, the
Kalman filter can work on all types of batteries and
addresses a limitation of many aforementioned techniques.

The Kalman filter has been widely used in fields such as
aerospace and computer graphics because it has several
advantages over many other similar mathematical system
models. In particular, the Kalman filter takes into account
both measurement uncertainty and estimation uncertainty
when it updates its estimation in successive steps. The
Kalman filter corrects both uncertainties based on new
measurements received from sensors. This is very important
for two reasons. First, sensors often have a noise factor, or
uncertainty, associated with its measurement. Over time, if
uncorrected, the measurement uncertainty can accumulate.
Second, in any modeling system the estimation itself has
inherent uncertainty because the internal dynamic of the
system may change over time. The estimation of one time
step may be less accurate than the next because the system
may have changed internally to behave less similarly to the
model. The correction mechanism in the Kalman filter
minimizes these uncertainties at each time step and prevents
them from degrading accuracy over time.

FIG. 1. shows the basic operation of the Kalman filter.
There are two main components in the Kalman filter—
predict component 101 and correct component 102. To start,
a set of initial parameters are fed into predict component
101. Predict component 101 predicts the internal states of
the system at a particular point in time using a set of input
parameters. Besides predicting the internal states, it also
gives the uncertainty of its prediction. Thus, as shown in
FIG. 1, the two outputs of predict component 101 are the
predicted internal state vector (which encompasses the inter-
nal states) and its uncertainty.

The role of correct component 102 is to correct the
predicted internal states and uncertainty it receives from
predict component 101. The correction is made by compar-
ing the predicted internal states and predicted uncertainty
with new measurements received from sensors. The result
are the corrected internal states and corrected uncertainty,
both of which are then fed back as parameters to predict
component 101 for the next iteration. At the next iteration,
the cycle repeats itself over again.

Mathematical Basis of Kalman Filter

FIG. 1A and FIG. 1B show the equations used within both
predict and correct components of the Kalman Filter. To
understanding the origin of equations used, consider a
dynamic process described by an n-th order difference
equation of the form

@

= =
YVirr=do Vit - - - Yn 1 Vi o1ty k=0,

where 1, is a zero-mean white random process noise. Under
some basic conditions, this difference equation can be
re-written as

Vit Qog Ak *** Gn2g On-lk Vi 1
Vi 1 0 - 0 0 V-1 0

T =| Y1 |=[ 0 1 0 0 Yicz | + |0 |uy
Yin+2 o 0 - 1 0 Vienil 0
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. . - .
in which x,,, represents a new state modeled by a linear

-
combination of the previous state x , and input u,. Note the
notation of matrices A and B. This leads to the state-space
model

- -
X py1=Ap X By 4
- —
y=[10...0]x; O]
or the more general form
- -
X r1=Ag X o+ Bty (6)
- =
¥ i=Ci X g +D o @)

which is the basis of many linear estimation models. While
equations (3) to (5) assume a system with a single input and
a single output, the general form in equations (6), (7) and the
following equations allow multiple inputs and outputs if B
has multiple columns and C has multiple rows.

Building on equations (6) and (7), the Kalman filter is
governed by the equations

X=AX_+Bu,_+wy

®
©)

Equation (9) is in a more general form, though D is often
assumed to be 0. The matrices A and B in equation (8) relate
to matrices A, and B, in equation (6), respectively. The
matrices C and D in equation (9) relate to matrices C, and
D, in equation (7). As equation (8) governs the estimation of
the dynamic system process, it is called the process function.
Similarly since equation (9) governs the estimation of the
measurement uncertainty, it is called the measurement func-
tion. The added random variables w, and v, in equation (8)
and (9) represent the process noise and measurement noise,
respectively. Their contribution to the estimation is repre-
sented by their covariance matrices 2, and 2, in FIGS. 1A
and 1B.

Referring again to FIG. 1A (which shows equations in
predict component 101), equation 151 is based on equation
(8) and equation 152 is based on in part on equation (9).
Equation 151 takes closely after the form of equation (8) but
the necessary steps to transform equation (9) into the form
shown in equation 152 are not shown here. Equation 151
predicts the internal states of the system in the next time
step, represented vector by %, ,(-), using parameters from
the current time step. The minus notation denotes that the
vector is the result of the predict component. The plus
notation denotes that the vector is the result of the correct
component. Hence in equation 151, the result of the correct
component in the current time step is used to predict the
result for the next time step. Equation 152 predicts the.
uncertainty, which is also referred to as the error covariance.
As such, the matrix X, in equation 152 is the process noise
covariance matrix.

Y Cxp+Digy+vy.

©)
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FIG. 1B shows the equations within correct component
102. These three equations are executed in sequence. First,
equation 161 determines the Kalman Gain factor. The Kal-
man Gain factor is used to calibrate the correction in
equations 162 and 163. The matrix C in equation 161 is from
that of equation (9), which relates the state to the measure-
ment y,. In equation 162, the Kalman Gain factor is used to
weight between actual measurement y, and predicted mea-
surement Cg,(-). As shown in equation 161, matrix Z , the
actual measurement-noise covariance, is inversely propor-
tional to the Kalman Gain factor L. As X, decreases, L,
increases and gives the actual measurement y, more weight.
However, if X, ,(+), the predicted uncertainty, decreases, L,
decreases and gives more weight to predicted measurement
CR4(-). Thus Kalman Gain factor favors either the actual
measurement or predicted measurement, depending on
which type of measurement has a smaller uncertainty.

Using this method of weighing measurement, equation
162 computes the corrected internal state vector ,(+) based
on predicted internal state vector %,(-) (from predict com-
ponent 101), new measurement y, and predicted measure-
ment C&,(-). Finally in the last equation of correct compo-
nent 102, equation 163 corrects the predicted uncertainty, or
the state-error covariance. Matrix I in equation 163 repre-
sents the identity matrix. The output of equations 162 and
163 are fed to predict component 101 for the next iteration.
More specifically, the calculated value X,(+) in equation 162
is substituted into equation 151 for the next iteration and the
calculated value X, ,(+) in equation 163 is substituted into
equation 152 for the next iteration. The Kalman filter thus
iteratively predicts and corrects the internal states and its
associated uncertainty. It must be noted that in practice, both
A, B, C, D, 2 and 2, might change in each time step.

Extended Kalman Filter

Whereas the Kalman filter uses linear functions in its
model, the Extended Kalman filter was developed to model
system with non-linear functions. Aside from this
distinction, the mathematical basis and operation for the
Extended Kalman filter are essentially the same as the
Kalman filter. The Extended Kalman filter uses an approxi-
mation model similar to the Taylor series to linearize the
functions to obtain the estimation. The linearization is
accomplished by taking the partial derivatives of the now
non-linear process and measurement functions, the basis for
the two equations in the predict component.

The Extended Kalman filter is governed by the following
equations

(10)

Fpepr=F ot W)
and

Vier =Xt iV0) (an

where random variables w, and v, represent process noise
and measurement noise, respectively. Non-linear function f
in equation (10) relates the internal state vector x, at the
current step k to the internal state vector X, ; at the next time
step k +I. Function f also includes as parameters both the
driving function u, and the process noise w,. The non-linear
function h in equation (11) relates the internal state vector X,
and input u, to the measurement y,.

FIG. 2A and FIG. 2B show the equations of the Extended
Kalman Filter. The sequence of operation remains the same
as the Kalman filter. There are still two components—
predict component 201 and correct component 202. The
equations are slightly different. Specifically, matrices A and
C now have a time step sub-script k meaning that they
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change at each time step. This change is needed because the
functions are now non-linear. We can no longer assume that
the matrices are constant as in the case of the Kalman filter.
To approximate them, Jacobian matrices are computed by
taking partial derivatives of functions f and h at each time
step. The Jacobian matrices are listed below.
A is the Jacobian matrix computed by taking the partial
derivative of f with respect to x, that is

(12

=%

The notation means “with x, evaluated as, or replaced by, %,
in final result.”

C is the Jacobian matrix computed by taking the partial
derivative of h with respect to x, that is

Ahy
9x;)

(13)
Cliiy = X
=%,

Aside from these additional steps of taking partial deriva-
tives of functions, the operation of the Extended Kalman
filter remains essentially the same as the Kalman filter.

Using Kalman Filter to Determine the SOC in Batteries

Because it only has to measure the battery output, the
Kalman filter has an advantage in that it works on all types
of batteries system, including dynamic applications such as
HEV and EV. There are existing applications that use the
Kalman filter to determine SOC of batteries. However, none
of them uses SOC as an internal state of the model. Thus the
uncertainty associated with the SOC estimation cannot be
determined. The defect is particularly important in HEV and
EV batteries where the uncertainty range is needed to
prevent undercharging of battery or loss of vehicle power.
Also none of the existing methods uses the Extended Kal-
man filter to model battery SOC non-linearly.

It is important to note that as the Kalman filter is only a
generic model. Each application of the Kalman filter still
needs to use a good specific battery model and initial
parameters that accurately describe the behavior of the
battery to estimate the SOC. For example, to use the Kalman
filter to measure the SOC as an internal state, the filter needs
to have a specific equation describing how the SOC transi-
tions from one time step to the next. The determination of
such an equation is not trivial.

SUMMARY OF THE INVENTION

The present invention relates to an implementation of a
battery State of Charge (SOC) estimator for any battery-
powered application. The batteries may be either primary
type or secondary (rechargeable) type. Moreover, the inven-
tion may be applied to any battery chemistry. It addresses the
problems associated with the existing implementations such
as high error uncertainty, limited range of applications (i.e.
only one type of battery) and susceptibility to change in
temperature.

Embodiments of the present invention use a Kalman filter,
a linear algorithm, with a battery model that has SOC as an
internal system state. Embodiments of the present invention
use an Extended Kalman filter, a non-linear algorithm, with
a battery model that has SOC as an internal system state.
Having SOC as an internal state allows the invention to
provide an uncertainty associated with its SOC estimation.
Embodiments of the present invention do not take battery
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temperature as a parameter in its SOC estimation. Other
embodiments of the present invention use battery tempera-
ture as a parameter to adjust its SOC estimation. This is
important to keep the accuracy of the SOC estimation from
being affected by changing temperature.

One embodiment has the option of allowing different
modeling parameters during battery operation to accommo-
date highly dynamic batteries used in Hybrid Electric
Vehicle (HEV) and Electric Vehicle (EV) where such pre-
vious implementations were difficult.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects and advantages of the
present invention will become better understood with regard
to the following description, appended claims and accom-
panying drawings where:

FIG. 1 shows the operation of a generic Kalman Filter.

FIG. 1A shows the equations of a predict component of a
generic Kalman Filter.

FIG. 1B shows the equations of a correct component of a
generic Kalman Filter.

FIG. 2A shows the equations of the predict component of
a generic Extended Kalman Filter.

FIG. 2B shows the equations of the correct component of
a generic Extended Kalman Filter.

FIG. 3A shows the components of the SOC estimator
according an embodiment of the present invention.

FIG. 3B shows the components of the SOC estimator
according another embodiment of the present invention.

FIG. 4A shows the equations of the predict component of
an implementation of the Extended Kalman Filter according
to an embodiment of the present invention.

FIG. 4B shows the equations of the correct component of
an implementation of the Extended Kalman Filter according
to an embodiment of the present invention.

FIG. 5A shows the equations of the predict component of
an implementation of the Extended Kalman Filter according
to an embodiment of the present invention.

FIG. 5B shows the equations of the correct component of
an implementation of the Extended Kalman Filter according
to an embodiment of the present invention.

FIG. 6 shows the operation of an Extended Kalman Filter
according an embodiment of the present invention.

FIG. 7 shows the operation of an Extended Kalman Filter
according another embodiment of the present invention.

FIG. 8A shows the equations of the predict component of
an implementation of the Kalman Filter according to an
embodiment of the present invention.

FIG. 8B shows the equations of the correct component of
an implementation of the Kalman Filter according to an
embodiment of the present invention.

FIG. 9 shows the operation of a Kalman Filter according
an embodiment of the present invention.

FIG. 10 shows the operation of an embodiment of the
present invention that dynamically changes the modeling
equations for the battery SOC.

DETAILED DESCRIPTION OF THE
INVENTION

Embodiments of the present invention relate to an imple-
mentation of a battery State of Charge (SOC) estimator for
any battery-powered application.

The present invention may be applied to batteries of
primary type or secondary (rechargeable) type. The inven-
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tion may be applied to any battery chemistry. Embodiments
of the present invention work on dynamic batteries used in
Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV)
where previous implementations were difficult. It has the
advantage of giving both the SOC estimate and the uncer-
tainty of its estimation. It addresses the problems associated
with the existing implementations such as high error
uncertainty, limited range of applications and susceptibility
to temperature changes.

Temperature-Independent Model

FIG. 3A shows the components of the SOC estimator
according an embodiment of the present invention. Battery
301 is connected to load circuit 305. For example, load
circuit 305 could be a motor in an Electric Vehicle (EV) or
a Hybrid Electric Vehicle (HEV). Measurements of battery
terminal voltage are made with voltmeter 302. Measure-
ments of battery current are made with ammeter 303.
Voltage and current measurements are processed with arith-
metic circuit 304, which estimates the SOC. Note that no
instrument is needed to take measurements from the internal
chemical components of the battery. Also note that all
measurements are non-invasive; that is, no signal is injected
into the system that might interfere with the proper operation
of load circuit 305.

Arithmetic circuit 304 uses a mathematical model of the
battery that includes the battery SOC as a model state. In one
embodiment of the present invention, a discrete-time model
is used. In another embodiment a continuous-time model is
used. In one embodiment, the model equations are

T =F (W) 14

Vih iV (1)
where X, is the model state at time index k (x, may either be
a scalar quantity or a vector), i, is the battery current at time
index k, and w, is a disturbance input at time index k. The
function f(x,i,w,) relates the model state at time index k to
the model state at time index k+1, and may either be a linear
or nonlinear function. Embodiments of the present invention
have the battery SOC as an element of the model state vector
X,

In equation (15), the variable v, is the measurement noise
at time index k, and y, is the model’s prediction of the
battery terminal voltage at time index k. The function
h(x,,1;,v,) relates the model’s state, current and measure-
ment noise to the predicted terminal voltage at time index k.
This function may either be linear or nonlinear. The period
of time that elapses between time indices is assumed to be
fixed, although the invention allows measurements to be
skipped from time to time.

Temperature-Dependent Model

FIG. 3B shows the components of the SOC estimator
according another embodiment of the present invention.
Battery 351 is connected to load circuit 355. For example,
load circuit 355 could be a motor in an Electric Vehicle (EV)
or Hybrid Electric Vehicle (HEV). Measurements of battery
terminal voltage are made with voltmeter 352. Measure-
ments of battery current are made with ammeter 353. Battery
temperature is measured by temperature sensor 356.
Voltage, current and temperature measurements are pro-
cessed with arithmetic circuit 354, which estimates the SOC.

Arithmetic circuit 354 uses a temperature dependent
mathematical model of the battery that includes the battery
SOC as a model state. In one embodiment of the present
invention, a discrete-time model is used. In another embodi
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ment a continuous-time model is used. In one embodiment,
the model equations are

(16)

an

Fper1=F ol T W)
Vi=h(ois V)

where x, is the model state at time index k (x, may either be
a scalar quantity or a vector), T, is the battery temperature
at time index k measured at one or more points within the
battery pack, i, is the battery current at time index k, and w,
is a disturbance input at time index k. The use of battery
temperature as an dependent parameter is important to keep
the accuracy of the. SOC estimation from being affected by
changing temperature. The function f(x,,1,,T,,w,) relates the
model state at time index k to the model state at time index
k+1, and may either be a linear or nonlinear function.
Embodiments of the present invention have the battery SOC
as an element of the model state vector X,.

In equation (17), the variable v, is the measurement noise
at time index k, and y, is the model’s prediction of the
battery terminal voltage at time index k. The function
h(X,1. T4V, relates the model’s state, current and measure-
ment noise to the predicted terminal voltage at time index k.
This function may either be linear or nonlinear. The period
of time that elapses between time indices is assumed to be
fixed, although the invention allows measurements to be
skipped from time to time.

Applying the Models to Kalman Filter and Extended
Kalman Filter

In one embodiment of the present invention, the
temperature-independent mathematical battery model of
equations (14) and (15) is used as the basis for a Kalman
filter to estimate the battery SOC as the system operates. The
functions f and h in this embodiment are linear. In another
embodiment of the present invention, the temperature-
dependent mathematical battery model of equations (16) and
(17) is used as the basis for a Kalman filter to estimate the
battery SOC as the system operates. The functions f and h
in this embodiment are also linear.

In another embodiment of the present invention, the
temperature-independent mathematical battery model of
equations (14) and (15) is used as a basis for an Extended
Kalman filter. The functions f and h in this embodiment are
non-linear. In another embodiment of the present invention,
the temperature-dependent mathematical battery model of
equations (16) and (17) is used as a basis for an Extended
Kalman filter. The functions f and h in this embodiment are
also non-linear. Those skilled in the art will recognize that
other variants of a Kalman filter may also be used, as well
as any Luenberger-like observer.

The Operation of the Extended Kalman Filter

FIG. 4A and FIG. 4B show an embodiment with an
Extended Kalman filter. In this embodiment, equations (14)
and (15) from the temperature-independent model is used as
the basis of the Extended Kalman filter. Within the two
figures, the equations within both the predict and correct
components retain the generic form of the Extended Kalman
Filter as shown in FIG. 2. However, in this embodiment
there is some variation in the variable names. The differ-
ences reflect the use of equations (14) and (15) and the
variables used in the battery SOC measurement. ,(-) now
represents the predicted vector representing the internal
states of the battery while X, () is now the predicted
state-error covariance (uncertainty). The functions f and h
are the same as those described in equations (14) and (15).
Note also that in equation 462 of correct component 402, the
actual measurement term is now denoted by m;.
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FIG. 5A and FIG. 5B show another embodiment with an
Extended Kalman filter. In this embodiment, equations (16)
and (17) from the temperature-dependent model is used as
the basis of the Extended Kalman filter. All the equations are
the same as those in FIG. 4A and FIG. 4B except that
equation 551 and 562 now have an extra temperature term
T,. Thus at every iteration of the Extended Kalman filter in
this embodiment, the temperature of the battery is used to
determine the estimation. Since battery capacity is some-
times affected by the temperature, this extra term allows the
equations to model the battery more accurately.

FIG. 6. shows the operation of the Extended Kalman filter
according to an embodiment of the present invention that
uses the temperature-independent model. In block 600, an
algorithm is initialized with prior estimates of X,(-) and
2, (=) %(-) is from function f in equation (14) while
2 4(-) is from function h in equation (15). Upon the
completion of block 600, with the estimates of %,(-) and
2, (-) the algorithm enters correct component of the
Extended Kalman filter. The estimates %,(-) and X,_,(-)
serve as the output from the predict component needed by
the correct component. In block 601, the partial derivative of
the equation h with respect to x is computed, yielding matrix
C. In block 602, the Kalman gain L, is computed using
matrix C, %,(-) and Z_,(-). This corresponds to the first
equation (equation 461) of correct component 402 in FIG.
4B. Then in block 603, the predicted internal state vector
%,(-), the Kalman gain L, and the measurement from
terminal voltage m, are used to calculate a corrected state
vector %,(+). This corresponds to the second equation of the
correct component in the Extended Kalman filter. In block
604, the predicted state-error covariance X, ,(-) is used to
compute a corrected state-error covariance X, ,(+) This
corresponds to the third equation of the correct component.

In block 605, both of the equations of the predict com-
ponent are computed. The matrix A is computed by taking
the partial derivative of the function f with respect to x Then
the prediction for the next iteration is computed, namely
X44a(-) and Z_,,,(-). In block 606 the time index k is
incremented and the operation begins in block 601 again
with the next time step.

FIG. 7. shows the operation of the Extended Kalman filter
according to another embodiment of the present invention
that uses the temperature-dependent model. In block 700, an
algorithm is initialized with prior estimates of X,(-) and
2, x(-) is from function f in equation (16) while X_,(-) is
from function h in equation (17). Upon the completion of
block 700, with the estimates of %,(-) and Z_,(-), the
algorithm enters correct component of the Extended Kalman
filter. The estimates %,(-) and X ,(-) serve as the output
from the predict component needed by the correct compo-
nent. In block 701, the partial derivative of the equation h
with respect to x is computed, yielding matrix C. In block
702, the Kalman gain L, is computed using matrix C, %,(-)
and X_ ;(-). This corresponds to the first equation (equation
561) of correct component 502 in FIG 5B. Then in block
703, the predicted internal state vector X,(-), the Kalman
gain L, and the measurement from terminal voltage m, are
used to calculate a corrected state vector &,(+). This corre-
sponds to the second equation of the correct component in
the Extended Kalman filter. In block 704, the predicted
state-error covariance X, ,(-) is used to compute a corrected
state-error covariance X, ,(+) This corresponds to the third
equation of the correct component.

In block 705, both of the equations of the predict com-
ponent are computed. The matrix A is computed by taking
the partial derivative of the function f with respect to x.
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Then the prediction for the next iteration is computed,
namely X,,,(-) and 2_,,,(-). In block 706 the time index k
is incremented and the operation begins in block 701 again
with the next time step.

The Operation of the Kalman Filter

FIG. 8 A and FIG. 8B show an embodiment with a Kalman
filter. In one embodiment, equations (14) and (15) from the
temperature-independent model is used as the basis of the
Kalman filter. In another embodiment, equations (16) and
(17) from the temperature-dependent model is used as the
basis of the Kalman filter. Within the two figures, the
equations within both the predict and correct components
retain the generic form of the Kalman Filter as shown in
FIG. 1. However, in this embodiment there is some variation
in the variable names. In one embodiment, the differences
reflect the use of equations (14) and (15) and the variables
used in the battery SOC measurement. In another
embodiment, the differences reflect the use of equations (16)
and (17) and the variables used in the battery SOC mea-
surement. %,(-) now represents the predicted vector repre-
senting the internal states of the battery while X, ,(-) is now
the predicted state-error covariance (uncertainty). Note also
that in equation 862 of correct component 802, the actual
measurement term is now denoted by m,.

FIG. 9 shows the operation of the Kalman filter according
to an embodiment of the present invention. In block 900, an
algorithm is initialized with prior estimates of %,(-) and.
2, (-). In one embodiment, &,(-) is from function f in
equation (14) while X, ,(-) is from function h in equation
(15). This embodiment is temperature-independent. In
another. embodiment, %,(-) is from function f in equation
(16) while X, ,(-) is from function h in equation (17). This
embodiment is temperature-dependent. Upon the comple-
tion of block 900, with the estimates of %,(-) and X, ,(-), the
algorithm enters correct component of the Kalman filter. The
estimates X,(-) and X_,(-) serve as the output from the
predict component needed by the correct component. In
block 901 the Kalman gain L, is computed using matrix C,
%,(-) and Z_,(-). This corresponds to the first equation
(equation 861) of correct component 802 in FIG. 8B. Then
in block 902 the predicted internal state vector %,(-), the
Kalman gain L, and the measurement from terminal voltage
m,, are used to calculate a corrected state vector X,(+). This
corresponds to the second equation of the correct component
in the Kalman filter. In block 903, the predicted state-error
covariance X, ,(-) is used to compute a corrected state-error
covariance 2, ,(+). This corresponds to the third equation of
the correct component. In block 904, both of the equations
of the predict component are calculated. Then the prediction
for the next iteration is computed, namely ., ,(-) and
2, 1.1(-) In block 905 the time index k is incremented and
the operation begins in block 901 again with the next time
step.

Specific Equations

In one embodiment, the following specific form of func-
tion f is used. The internal state vector x, is:

S0C,
FILT;
IFl
1F2

18)

X =
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and the governing equation for each state is:

SOCk,y = SOC, — U |" At C, (temp...) (19)

FILTis1 = SOCy + k;FILT, +ks

ap ar 0 n
IF, + (L] At/ Cp(zemp...).
1

IF = [ L

—az a

The battery SOC is the first element of the state vector.
The variables are defined as follows: I, is the instantaneous
current, At is the interval between time instants, C,
(temp . . .) is the “Peukert” capacity of the battery adjusted
to be temperature-dependent, n is the Peukert exponent
related to the Peukert. capacity, and n(I,) is the battery
coulombic efficiency as a function of current. The state
variables FILT and IF are filter states that capture most of the
smooth slow dynamics of the battery.

In one embodiment, the following specific form of func-
tion h is used:

Y=k FILT ok, ol 4k /(SOC 4k g+ SOC H e e WTF,. (20)
where y, is the terminal voltage. All other variables (k,,k,
etc) are coefficients of the model, which may be determined
a priori from lab tests and may be adjusted during system
operation using mechanisms not discussed here. These coef-
ficients vary in the present invention so that the coefficients
used for an instantaneous discharge of 10 Amps would be
different from those used for an instantaneous charge of 5
Amps, for example. This allows the invention to more
precisely model the current-dependence of the model.

In another embodiment, the following form of function f
is used. The internal state vector x, is

S0C,
SOC,_;

@D

SOCy_,
iy
k-1
X =
i g
V-1

V-2

Yie—y

where SOC, is the present SOC estimate, SOC,_; is the
previous SOC estimate (and so forth), i, is the present
current measurement (and so forth) and y,_, is the previous
battery voltage estimate. o, § and y are positive constants
chosen to make an acceptable model with a parsimonious
number of state variables. The governing equation for the
SOC state is:
SOC,,;=SOC,—III"ALC (temp . . . ) (22)
In the embodiment, the specific form of function h is used
V(X Ty, (23)

where h is implemented as a nonlinear function fit to
measured data. For example, h may be implemented using a
neural network.
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In one embodiment a neural network may be used to
estimate the internal states of the battery. The difference
between this embodiment and prior neural networks is as
follows. In prior art neural networks, the estimated SOC is
the output of the neural networks. This embodiment indi-
rectly measures the SOC by first modeling the battery cell
using a neural network with SOC as one of its states, and
then uses a Kalman filter with the neural network to estimate
SOC. This approach has two main advantages. First it can be
trained on-line while it is in operation. Second, error bounds
on the estimate may be computed.

Changing Parameters

FIG. 10 shows the operation of an embodiment of the
present invention that dynamically changes modeling equa-
tions for the battery SOC. In this embodiment, the arithmetic
circuit can accommodate changing behaviors of the battery
to use different parameters for different time periods. In
block 1000, a change in battery current level is detected. For
example, in a Hybrid Electric Vehicle (HEV), a sudden drain
in the battery power is caused by the vehicle going uphill.
The sudden change in condition triggers the arithmetic
circuit to use a different set of modeling equations to more
accurately estimate the SOC in the new condition. In block
1010 a new set of modeling equations are used. In 1020, the
new equations are used to determine the SOC. This adaptive
modeling behavior is useful in highly dynamic applications
such as in Hybrid Electric Vehicles (HEV) and Electric
Vehicles (EV).

Thus, an implementation of battery charge estimator is
described in conjunction with one or more specific embodi-
ments. The invention is defined by the claims and their full
scope of equivalents.

What is claimed is:

1. A method for estimating state-of-charge in a battery,
comprising:

making an internal states prediction of said battery where

said state-of-charge is one of said internal states;
making an uncertainty prediction of said internal states
prediction;

correcting said internal states prediction and said uncer-

tainty prediction; and

applying an algorithm that iterates said making an internal

states prediction, said making an uncertainty prediction
and said correcting to yield an ongoing estimation to
said state-of-charge and an ongoing uncertainty to said
state-of-charge estimation.

2. The method of claim 1 where said making an internal
states prediction comprises:

determining a current measurement;

determining a voltage measurement; and

using said current measurement and said voltage mea-

surement in a mathematical model to make said internal
states prediction.

3. The method of claim 2 where said making an uncer-
tainty prediction comprises using said current measurement
and said voltage measurement in a mathematical model to
make said uncertainty prediction.

4. The method of claim 3 where said correcting com-
prises:

computing a gain factor;

computing a corrected internal states prediction using said

gain factor, said voltage measurement and said internal
states prediction; and

computing a corrected uncertainty prediction using said

gain factor and said uncertainty prediction.
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5. The method of claim 4 where said applying comprises
using said corrected internal states prediction and said
corrected uncertainty prediction to obtain predictions for the
next time step where said algorithm repeats again.

6. The method of claim 5, where said algorithm is a
Kalman Filter.

7. The method of claim 5, where said algorithm is an
Extended Kalman Filter.

8. The method of claim 7, where said making an internal
states prediction further comprises using different math-
ematical models for predictions based on changing battery
conditions.

9. The method of claim 7, where said making an uncer-
tainty prediction further comprises using different math-
ematical models for predictions based on changing battery
conditions.

10. The method of claim 2 where said making an internal
states prediction further comprises:

determining a temperature; and

using said temperature measurement, said current mea-
surement and said voltage measurement in a math-
ematical model to make said internal states prediction.

11. The method of claim 10 where said making an
uncertainty prediction comprises using said temperature
measurement, said current measurement and said voltage
measurement in a mathematical model to make said uncer-
tainity prediction.

12. The method of claim 11 where said correcting com-
prises:

computing a gain factor;

computing a corrected internal states prediction using said
gain factor, said voltage measurement and said internal
states prediction; and

computing a corrected uncertainty prediction using said
gain factor and said uncertainty prediction.

13. The method of claim 12 where said applying com-
prises using said corrected internal states prediction and said
corrected uncertainty prediction to obtain predictions for the
next time step where said algorithm repeats again.

14. The method of claim 13, where said algorithm is a
Kalman Filter.

15. The method of claim 13, where said algorithm is an
Extended Kalman Filter.

16. The method of claim 15, where said making an
internal states prediction further comprises using different
mathematical models for predictions based on changing
battery conditions.

17. The method of claim 15, where said making an
uncertainty prediction further comprises using different
mathematical models for predictions based on changing
battery conditions.

18. An apparatus for estimating state-of-charge in a
battery, comprising:

a component configured to make an internal states pre-
diction of said battery where said state-of-charge is one
of said internal states;

a component configured to make an uncertainty prediction
of said internal states prediction;

a component configured to correct said internal states
prediction and said uncertainty prediction; and

a component configured to apply an algorithm that iterates
steps taken by said component configured to make an
internal states prediction, said component configured to
make an uncertainty prediction and said component
configured to correct to yield an ongoing estimation to
said state-of-charge and an ongoing uncertainty to said
state-of-charge estimation.
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19. The apparatus of claim 18 where said component
configured to make an internal states prediction comprises:

a component configured to determine a current measure-
ment;

a component configured to determine a voltage measure-
ment; and

a component configured to use said current measurement
and said voltage measurement in a mathematical model
to make said internal states prediction.

20. The apparatus of claim 19 where said component
configured to make an uncertainty prediction comprises a
component configured to use said current measurement and
said voltage measurement in a mathematical model to make
said uncertainty prediction.

21. The apparatus of claim 20 where said component
configured to correct comprises:

a component configured to compute a gain factor;

a component configured to compute a corrected internal
states prediction using said gain factor, said voltage
measurement and said internal states prediction; and

component configured to compute a corrected uncertainty
prediction using said gain factor and said uncertainty
prediction.

22. The apparatus of claim 21 where said component
configured to apply comprises a component configured to
use said corrected internal states prediction and said cor-
rected uncertainty prediction to obtain predictions for the
next time step where said algorithm repeats again.

23. The apparatus of claim 22, where said algorithm is a
Kalman Filter.

24. The apparatus of claim 22, where said algorithm is an
Extended Kalman Filter.

25. The apparatus of claim 24, where said component
configured to make an internal states prediction further
comprises a component configured to use different math-
ematical models for predictions based on changing battery
conditions.

26. The apparatus of claim 24, where said component
configured to make an uncertainty prediction further com-
prises a component configured to use different mathematical
models for predictions based on changing battery condi-
tions.
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27. The apparatus of claim 19 where said component
configured to make an internal states prediction further
comprises:

a component configured to determine a temerpature mea-

surement; and

a component configured to use said temperature
measurement, said current measurement and said volt-
age measurement in a mathematical model to make said
internal states prediction.

28. The apparatus of claim 27 where said component
configured to make an uncertainty prediction comprises a
component configured to use said temperature measurement,
said current measurement and said voltage measurement in
a mathematical model to make said uncertainty prediction.

29. The apparatus of claim 28 where said component
configured to correct comprises:

a component configured to compute a gain factor;

a component configured to compute a corrected internal
states prediction using said gain factor, said voltage
measurement and said internal states prediction; and

a component configured to compute a corrected. uncer-
tainty prediction using said gain factor and said uncer-
tainty prediction.

30. The apparatus of claim 28 where said component
configured to apply comprises a component configured to
use said corrected internal states prediction and said cor-
rected uncertainty prediction to obtain predictions for the
next time step where said algorithm repeats again.

31. The apparatus of claim 30, where said algorithm is a
Kalman Filter.

32. The apparatus of claim 30, where said algorithm is an
Extended Kalman Filter.

33. The apparatus of claim 32, where said component
configured to make an internal states prediction further
comprises a component configured to use different math-
ematical models for predictions based on changing battery
conditions.

34. The apparatus of claim 32, where said component
configured to make an uncertainty prediction further com-
prises a component configured to use different mathematical
models for predictions based on changing battery condi-
tions.





