
EVS24
Stavanger, Norway, May 13 - 16, 2009

Efficient Battery Pack State Estimation using
Bar-Delta Filtering

Gregory L. Plett
University of Colorado at Colorado Springs and Consultant to Compact Power Inc.,
1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA, glp@eas.uccs.edu

Abstract

Accurate state-of-charge (SOC) estimation is critical for xEV applications but involves considerable
computational complexity. We argue that battery-pack SOC is undefined, and that individual estimates
of all cell SOCs are required to compute available power and energy. Furthermore, it is not feasible
to simply replicate a cell-based method for all cells in a pack. Instead, we propose a new method for
pack state estimation that we call “bar-delta filtering” that takes advantage of similar states among pack
cells. It estimates all battery-pack cell state-of-charge and state-of-health values using only slightly more
computation than for a single cell.

Keywords: state of charge, battery SoH (State of Health), battery management, BMS, control system.

1 Introduction
In this paper, we consider state estimation for
battery packs for vehicular application, including
hybrid electric vehicles (charge conserving and
plug-in), battery electric vehicles, and so forth.
We refer to this whole family herein as “xEV”.
For hybrid EVs, it is critical to be able to de-
termine available power at any point in time;
for pure EVs, it is critical to be able to deter-
mine total available energy. These, in turn, re-
quire knowing (at minimum) cell state-of-charge
(SOC), cell resistances, and cell total capacities.
There are a variety of methods in the literature
for making estimates of these more basic quan-
tities [1–4]. We prefer those that are based on
Kalman filtering techniques for their strong the-
oretical basis in optimal estimation theory and
for their track record in a wide variety of ap-
plications. In particular, we have found sigma-
point Kalman filters (SPKF) to be the most accu-
rate method of estimating cell SOC, cell resis-
tance, and cell total capacity that we have en-
countered [5, 6]. Unfortunately, they are also
among the most computationally complex.
Furthermore, we contend that it is necessary to
estimate all individual cell SOC, resistance, and
capacity values when determining battery pack
power and energy. We have heard some pro-
pose estimating a “pack SOC” value instead, but

we argue that “pack SOC” does not make sense.
In an illustrative example, consider a pack com-
prising two cells wired in series, one of which
has SOC equal to 0% and the other having SOC
equal to 100%. What then is the pack SOC? Is
it 0%? Is it 50%? Is it 100%? It cannot be 0%
because that would indicate that the pack can be
charged, but the pack cannot be charged without
overcharging the cell that is at 100%. It cannot be
100% because that would indicate that the pack
can be discharged, but the pack cannot be dis-
charged without over-discharging the cell that is
at 0%. Similarly, it cannot be 50%. While this
is an extreme example, it serves to illustrate that
“pack SOC” is not a concept that makes sense in
any useful way. In order to compute available en-
ergy and power of a battery pack, we again em-
phasize that knowing individual cell SOCs, ca-
pacities, and resistances is necessary.
But, how to compute those values? One possibil-
ity is to select a method that works well for com-
puting cell SOC, resistance, and capacity, and to
replicate that method N times to estimate the de-
sired values for a pack comprising N cells wired
in series. Clearly, this will work, but it also re-
quires a prohibitive level of computation. In this
paper, we explore a method that takes advantage
of the fundamental similarity between all series-
connected cells in the pack in order to furnish all

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1



cell SOC, resistance and total capacity estimates
in a manner requiring only somewhat more com-
putational effort than for a single cell.

2 Bar-delta filtering
While we have argued that “pack SOC” does not
make sense, the concept of “pack-average SOC”
can be useful as a step toward finding individual
cell SOCs. Since all cells in a series string ex-
perience the same current, we expect their SOC
values to (1) move in the same direction for any
given applied current, by (2) a similar amount
(with the differences determined by unequal cell
capacities). We can take advantage of this simi-
larity by creating one algorithm to determine the
composite average behavior of all cells in the bat-
tery pack, and another algorithm to determine the
individual differences between specific cells and
that composite average behavior.
We define pack-average SOC as the average of
all cell SOC values. It is approximately equal to
(but not identical to) the value of SOC that would
be found via an OCV method if the pack volt-
age were divided by N to make a scaled pack
voltage. We find it adequate, however, to esti-
mate pack-average SOC using any available cell
SOC estimation method with inputs: pack cur-
rent (same for all cells), scaled pack voltage,
and average pack temperature. The pack-average
SOC is never less than the least SOC value, so is
greater than 0%. It is never greater than the great-
est SOC value, so is less than 100%. Therefore,
its range is within the standard SOC range.
Pack-average and individual cell dynamics de-
pend on more than SOC. Generally, we are in-
terested in estimating other quantities as well,
as discussed below. Therefore, we consider es-
timating pack-average and individual cell “state
vectors” at every sampling instant within the bat-
tery management system (BMS). For example,
we may sample all cell voltages, pack current,
and module temperatures once per second. Time
within the BMS is then indexed by k, in seconds,
and we can denote the state vector of interest for
any given cell i at time k as x (i)

k . Furthermore, us-
ing the idea of pack-average state vector, which
extends the idea of “pack-average SOC” to all
states of interest, we can write an individual cell’s
state vector as x (i)

k = x̄k + !x (i)
k where x̄k is the

pack-average state vector and !x (i)
k is the differ-

ence between the state vector of cell i and the
pack average state vector. We call x̄k “x-bar” and
we call !x (i)

k “delta-x .” So, if we can estimate
x-bar for the pack and delta-x for every cell, then
we can compute an estimate of the state vector
for every cell. We call the method that we have
developed “bar-delta filtering,” as inspired by the
“x-bar” and “delta-x” naming convention.
The first step in bar-delta filtering is to replace
the N individual state vector estimators—which
each jointly estimate the state and parameters of a
single cell—with a single state vector estimator-
which estimates the pack-average state and pa-
rameters. This is the x-bar filter, or simply, the
bar-filter. The second step is to add N estima-

tors that estimate the delta-x portion of every in-
dividual cell’s state. These are called the x-delta
filters, or simply, the delta-filters.
At first, it appears that we have taken a problem
of complexity N (because we started with N in-
dividual cell state vector estimators) and replaced
it with a problem of complexity N + 1 (because
we ended with one bar filter and N delta filters).
However, on closer examination this is not the
case—the three different types of estimator in-
volved are not of identical computational com-
plexity. The bar filter is of the same computa-
tional complexity as the individual state estima-
tors that it uses as a basis. However, the delta
filters can be made very simple. Furthermore,
the delta filters do not need to be executed at the
same rate as the bar filter. While SOC (for exam-
ple) in individual cells can change very quickly,
the difference in SOC between cells changes at a
much slower rate. Therefore, the delta filters do
not need to be updated as quickly as either the N
individual state vector estimators that we started
with, or the bar filter. The delta filters may op-
erate at much slower rates, down to 1/N times
the rate of the bar filter. Therefore, overall, the
bar-delta filter method has a computational com-
plexity that can be as low as somewhat more than
a single cell state estimator for a multi-cell pack.

3 The ESC cell model
While the bar-delta method may be used with a
variety of cell state estimation means, we will
proceed in this paper by illustrating how to use
it with a sigma-point Kalman filter (SPKF) ap-
proach for the bar filter. This method requires
a mathematical model of cell dynamics, and we
will use the “enhanced self-correcting” (ESC)
cell model as a basis for doing so. This model
has been well defined elsewhere [5,7], so we will
only summarize the necessary features here.
The ESC cell model includes states that describe
the dynamics of SOC movement, polarization
voltages, and a hysteresis level. The model out-
put blends these characteristics together by com-
puting an open-circuit-voltage (OCV) from the
SOC level, mixes in the polarization voltages and
hysteresis level, and includes ohmic i × R losses.
The equation that models the dynamics of SOC
movement for a given cell i can be written as:

z(i)
k = z(i)

k−1 − ik−1
!t
C (i) = z(i)

k−1 − ik−1!tC (i)
inv (1)

where z(i)
k denotes the SOC of cell i at time in-

dex k, ik denotes the pack current at time index
k, !t denotes the sampling period (e.g., one sec-
ond), and C (i)

inv denotes the inverse of cell capacity
for cell i : C (i)

inv = 1/C (i). Note that the capacity
may also be modeled as time-varying, denoted as
C (i)

inv,k .
The equation that models the polarization voltage
dynamics for a given cell i can be written as:

f (i)
k = A f f (i)

k−1 + B f ik−1,

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 2



where f (i)
k denotes a vector of polarization volt-

ages for cell i at time index k, A f is a matrix
comprising the dynamic time constants of the po-
larization voltages of the cell, and B f is a con-
stant input matrix.
The equation that models hysteresis voltage dy-
namics for a given cell i can be written as:

h(i)
k = exp

(
−

∣∣∣ik−1γ!tC (i)
inv,k−1

∣∣∣
)

h(i)
k−1+

(
1 − exp

(
−

∣∣∣ik−1γ!tC (i)
inv,k−1

∣∣∣
))

sgn(ik−1),

where h(i)
k denotes the hysteresis level for cell i at

time index k, γ is a hysteresis rate time constant,
and the “sgn” function returns −1 for a negative
argument, 0 for a zero argument, and +1 for a
positive argument.
The cell-model state includes these four dynamic
quantities, which are combined in a single vector
as:

x (i)
k =




z(i)

k
f (i)
k

h(i)
k



 .

Using the quantities from this cell-model state
vector, the cell terminal voltage is expressed as

y(i)
k = OCV(z(i)

k ) − ik R(i) + C f (i)
k + Mh(i)

k ,

where the “OCV” function returns the open-
circuit-voltage for a given SOC, R(i) is a cell
resistance, C is a vector of polarization voltage
blending constants, and M is a hysteresis maxi-
mum voltage limit.
Temperature dependence may be included in
any of the parameters of the model. Specific
temperature-dependent notation has been omit-
ted from this paper for purposes of clarity.

4 ESC-SPKF bar-delta filtering
A Kalman filter is an algorithm for estimating
the internal state of some dynamic system given
only measurements of the system’s input and out-
put and given a model of system dynamics. For
the purpose of estimating the state of an electro-
chemical cell, the ESC model may be used with
a Kalman filter, where the input to the model is
cell current, and the output of the model is cell
terminal voltage under load. Every time step, the
Kalman filter predicts what it expects to see as
the cell terminal voltage given its present state
estimate and measured cell input, then compares
its estimate of cell terminal voltage to the mea-
sured cell terminal voltage, and updates its state
estimate accordingly, in the direction of reduc-
ing the estimation error of the cell terminal volt-
age. The original Kalman filter was developed to
estimate states of linear systems, but many sys-
tems (like electrochemical cells) are in fact non-
linear, so extensions to the original Kalman fil-
ter were developed to estimate states of nonlinear
systems. We have used extended Kalman filters
(EKFs) and sigma-point Kalman filters (SPKFs)

for this purpose [5, 6, 8–10]. In our experience,
SPKF gives the best cell state estimation results
we have seen, although they are also fairly com-
plex mathematically. The implementation that
we describe here uses one SPKF per pack to com-
pute pack-average estimates, and N simpler fil-
ters for the cells to compute differences between
pack-average and cell estimates.

4.1 The pack bar filter
In the implementation that we describe here,
the pack-average SPKF estimated the following
quantities:
! The pack-average state-of-charge;
! Two pack-average polarization voltages;
! The pack-average hysteresis voltage;
! The pack-average cell resistance;
! The pack-average cell (inverse) capacity; and
! The current sensor bias.
The last item, the current sensor bias, is a critical
value to know for any SOC estimation algorithm.
This is not something that could be estimated us-
ing N standard SPKFs, but is enabled by using
the bar-delta filtering method. The bias dynam-
ics are modeled as i b

k = i b
k−1 + nb

k−1, where nb
k

is a fictitious noise source that is included in the
model to allow SPKF to adapt the bias estimate.
In order to design an SPKF to estimate these
quantities, a state-space model of their dynamics
is required. The model for all of these quanti-
ties is the same as the individual-cell model, ex-
cept that average voltages and average currents
are used as input rather than individual voltages
and currents. (Because the cells are connected in
series, the bar filter considers all cell currents to
be equal, which is true unless some cells are be-
ing equalized. Delta filters must consider equal-
ization currents as well.)
For example, (ignoring bias current for now) to
find the pack-average SOC dynamics, we take
Eq. (1) and add N copies together—one for each
cell—and then divide by N .

1
N

N∑

i=1

z(i)
k = 1

N

N∑

i=1

z(i)
k−1 − ik−1!t

N

N∑

i=1

C (i)
inv,k−1.

We can express this as

z̄k = z̄k−1 − ik−1!tC̄inv,k−1,

where z̄k is the pack-average SOC at time index
k, and C̄inv,k denotes the pack-average cell in-
verse capacity. If we also consider the current-
bias state,

z̄k = z̄k−1 − (ik−1 − i b
k−1)!tC̄inv,k−1.

Similarly, the dynamics of all pack-average states
and parameters of interest may be summarized

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 3



as:

z̄k = z̄k−1 − (ik−1 − i b
k−1)!tC̄inv,k−1

f̄k = A f f̄k−1 + B f (ik−1 − i b
k−1)

θk = exp
(
−

∣∣(ik−1 − i b
k−1)γ!tC̄inv,k−1

∣∣)

h̄k = θk h̄k−1 + (1 − θk) sgn(ik−1 − i b
k−1)

R̄k = R̄k−1 + nR̄
k−1

C̄inv,k = C̄inv,k−1 + nC̄inv
k−1

i b
k = i b

k−1 + nb
k−1,

where nR̄
k and nC̄inv

k are fictitious noise sources
that allow the SPKF to adapt the corresponding
pack-average parameters.
The bar-filter for the pack employs an SPKF that
uses this model of pack-average states and the
measurement equation

ȳk = OCV(z̄k)+Gk f̄k − R̄k(ik − i b
k )+ Mh̄k +vk,

where vk models sensor noise.

4.2 The cell delta filters
The quantities that we are most interested in es-
timating at the individual cell level are: SOC, re-
sistance, and capacity. These all factor into deter-
mining pack available power and lifetime (state-
of-health) estimates.
We will first consider the delta filter approach
to determining cell SOC. Note, from before,
!z(i)

k = z(i)
k − z̄k . Then, using prior equations

for the dynamics of z(i)
k and z̄k , we find:

!z(i)
k = z(i)

k − z̄k

=
(

z(i)
k−1 − (ik−1 − i b

k−1)!tC (i)
inv,k−1

)
−

(
z̄k−1 − (ik−1 − i b

k−1)!tC̄inv,k−1
)

= !z(i)
k−1 − (ik−1 − i b

k−1)!t!C (i)
inv,k−1

where !C (i)
inv,k = C (i)

inv,k − C̄inv,k . Because !C (i)
inv,k

tends to be small, the state !z(i)
k does not change

very quickly, and can be updated at a slower
rate than the pack-average SOC by accumulating
(ik−1 − i b

k−1)!t in between updates. An output
equation suitable for combining with this state
equation is

y(i)
k = OCV(z̄k + !z(i)

k ) + Gk f̄k

−(R̄k + !R(i)
k )(ik − i b

k ) + Mh̄k + vk .

To estimate !z(i)
k , an SPKF is used with these

two equations. Since it is a single-state SPKF, it
is very fast.
We can similarly make state-space models of the
delta-resistance and delta capacity states. A sim-
ple state-space model of the delta-resistance state

is:

!R(i)
k = !R(i)

k−1 + n!R
k−1

yk = OCV(z̄k + !z(i)
k )

−(R̄k + !R(i)
k )(ik − i b

k ) + v!R
k

where !R(i)
k is the difference between pack-

average resistance and cell resistance and is mod-
eled as a constant value with a fictitious noise
process n!R

k allowing adaptation, yk is a crude
estimate of the cell’s voltage, and v!R

k models
estimation error. The dynamics of the delta-
resistance state are simple and linear enough
to use a single-state EKF rather than an SPKF.
Again, it is very fast.
To estimate cell capacity using an EKF, we again
formulate a simple cell model

!C (i)
inv,k = !C (i)

inv,k−1 + n!Cinv
k−1

dk = (z(i)
k − z(i)

k−1) + (ik−1 − i b
k−1)!t ×

(
C̄inv,k−1 + !C (i)

inv,k−1

)
+ ek

The second equation is a reformulation of the
SOC state equation such that the expected value
of dk is equal to zero by construction. Again, an
EKF is constructed using the model defined by
these two equations to produce a capacity esti-
mate. As the EKF runs, the computation for dk
in the second equation is compared to the known
value (zero, by construction), and the difference
is used to update the inverse capacity estimate.
Note that good estimates of the present and pre-
vious states-of-charge are required. Here, they
come from the pack SPKF combined with the
cell SPKF.
The output of the delta filters is computed by
combining the average battery pack state with the
battery cell module delta states produced by the
individual Kalman filters:

z(i)
k = z̄k + !z(i)

k

R(i)
k = R̄k + !R(i)

k

C (i)
k = 1

C̄inv,k + !C (i)
inv,k

We note again that one desirable feature of the
delta filters has been defined by the foregoing
equations. Although the battery pack state may
change rapidly, the difference between any bat-
tery cell module state and the battery pack aver-
age state changes very slowly. With this under-
standing, it is apparent that the bar filter needs to
be executed frequently, but the delta filters need
be executed much less frequently. Therefore, the
computational tasks implemented by bar-delta
filtering can approach 1/N times the computa-
tional tasks utilized by other methods and still
produce accurate estimates of the desired battery
cell module states.

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 4



0 5 10 15 20 25 30 35 40 45 50 55 60 65
−200
−175
−150
−125
−100
−75
−50
−25

0
25
50
75

100

Time (min)

Cu
rre

nt
 (A

, n
eg

at
ive

 =
 c

ha
rg

e)

Battery pack current

0 5 10 15 20 25 30 35 40 45 50 55 60 65
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4
4.1
4.2
4.3
4.4

Time (min)

Vo
lta

ge
 (V

)

Battery pack cell voltages for all cells

Figure 1: Pack current versus time and individual cell voltages versus time for algorithm testing.

5 Results: Algorithm accuracy
In this section, we present some results obtained
using the proposed algorithms. In order to do so,
we would ideally present estimates of SOC (etc.)
compared with true values of SOC for some ex-
ample tests. We immediately run into a problem,
however: regardless of which BMS estimation
algorithm is used, the primary difficulty when
validating any such algorithm on physical cells
is that the “truth” values are not known. There
are no sensors that can directly measure SOC or
SOH. At different points in time, laboratory tests
can be performed that can be used to determine
a posteriori what the SOC or SOH was at that
time, but cannot determine SOC or SOH in real
time, as the battery pack operates.
We have developed a simulation-based validation
methodology as one component of a strategy that
overcomes this obstacle [11]. A software sim-
ulator of cell dynamics first synthesizes various
driving, temperature, parameter, and sensor-fault
profiles for the battery pack being modeled. All
internal variables that are dependent on the cy-
cling history of the cell (e.g., SOC and SOH) are
known to the software simulator, so “truth” val-
ues are established. The input-output behavior of
this model has been tested against physical cells,
and works well. We call this the “Data Gener-
ator System” (DGS). The BMS algorithms are
then executed using this synthetic cell data as in-
put, and the algorithm results are compared to the
“truth” values.
We acknowledge that this method is no substi-
tute for actual testing of real cells. However, it
can help to minimize the amount of this testing
that is required if a careful design-of-experiments
approach is taken. A balanced overall validation
strategy therefore comprises a large suite of desk-
top validation tests and a smaller suite of real-
time tests on physical battery packs. We present
this “desktop validation” means here since it
gives an unequivocal truth value for the purpose
of evaluating the algorithms themselves.
The synthesized data was generated using a
model of a fifth-generation prototype LiPB cell
that is very similar to the one presented in [5, 6],
but with a somewhat higher capacity. Root-
mean-square (RMS) model error versus cell tests
conducted using an Arbin BT2000 are on the or-

der of 5–10 mV over all operating conditions.
The tests presented in this section are the result
of cycling a four-cell LiPB pack with a UDDS
cycle, a rest period, the same UDDS cycle, and
a rest period. The pack cells had true capacities
of 6.5, 7.0, 7.5, and 8.0 Ah, and resistances of
2.0, 2.25, 2.5, and 2.75 m$. The cells had initial
SOC values of 40, 45, 50, and 55%. The current-
sensor bias was 0.5 A. The algorithms were ini-
tialized with all cells having estimated capacity
of 6.2 Ah, estimated resistances of 2.25 m$, esti-
mated current-sensor bias of 0 A, and initial SOC
estimates based on the resting initial voltage of
the cells. SPKF was used for the bar filter and
the SOC delta filters, and EKF was used for the
resistance and capacity-inverse delta filters.
The left frame of Fig. 1 shows the pack current
plotted versus time for this test, using the PNGV
convention (negative current is charge current).
The right frame of Fig. 1 shows the individual
cell voltages versus time for this test. Due to
different initial SOC levels, the cell voltages are
clearly separated. Less apparent, the differing ca-
pacities and resistances also affect the cell volt-
ages.
The left frame of Fig. 2 shows SOC plotted ver-
sus time for the four cells. Movement is quite
similar in all cells, as would be expected. The
right frame if Fig. 2 shows the estimation error
for the pack-average SOC estimate produced by
the bar filter. Error bounds on the SOC state are
also plotted based on the output of the SPKF,
and we see that (1) the estimation error is always
within 1%, and (2) the error bounds always en-
compass the true error. (One key benefit of us-
ing EKF or SPKF is that the estimator algorithm
automatically produces both a state estimate and
dynamic error bounds on that estimate. Here, we
see that those bounds are accurate.)
Fig. 3 plots the output of the entire bar-delta algo-
rithm (pack average results added to delta-filter
results) to display the estimates of all four cell
SOC values versus time. In the left frame, the
actual SOC values are plotted versus time, and
compared with the estimates. In the right frame,
the estimation errors are plotted versus time, and
error bounds are also drawn. Root-mean-squared
estimation error is on the order of 0.4%.
Fig. 4 displays a similar result for the resistance
estimates of the bar-delta filter. The left frame

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 5



0 5 10 15 20 25 30 35 40 45 50 55 60 65
34

37

40

43

46

49

52

55

58

Time (min)

Ce
ll S

O
C 

(%
)

SOC for all cells in battery pack

0 5 10 15 20 25 30 35 40 45 50 55 60 65
−5
−4
−3
−2
−1

0
1
2
3
4
5

Time (min)

Er
ro

r i
n 

pa
ck
−a

ve
ra

ge
 S

O
C 

(%
)

Bar filter pack−average SOC estimation error

 

 
SOC estimation error
Estimation error bounds

Figure 2: On the left, individual cell SOCs are plotted; on the right, pack-average SOC estimation error is plotted.

0 5 10 15 20 25 30 35 40 45 50 55 60 65
34

37

40

43

46

49

52

55

58

Time (min)

Ce
ll S

O
C 

(%
)

Total bar−delta SOC estimates for all cells

 

 
True SOC
Estimated SOC

0 5 10 15 20 25 30 35 40 45 50 55 60 65
−5
−4
−3
−2
−1

0
1
2
3
4
5

Time (min)

Er
ro

r i
n 

ce
ll S

O
C 

(%
)

Total bar−delta SOC estimation error for all cells

 

 
Estimation error in SOC
Error bounds

Figure 3: On the left, individual SOC estimates compared to truth for all cells; on the right, SOC estimation error
is plotted.

0 5 10 15 20 25 30 35 40 45 50 55 60 65
1

1.25
1.5

1.75
2

2.25
2.5

2.75
3

3.25
3.5

Time (min)

Pa
ck
−a

ve
ra

ge
 re

sis
ta

nc
e 

(m
Ω

)

Bar filter estimated pack−average resistance

 

 
True resistance
Estimated resistance
Estimate error bounds

0 5 10 15 20 25 30 35 40 45 50 55 60 65
1.6
1.7
1.8
1.9

2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

Time (min)

Ce
ll r

es
ist

an
ce

 (m
Ω

)

Total bar−delta filter estimated resistances for all cells

 

 

True resistance
Estimated resistance

Figure 4: Resistance estimates from the bar-delta filtering method.

shows the pack-average resistance estimate ver-
sus time, compared with the true pack average
resistance, with error bounds from the SPKF also
drawn. The right frame draws the individual re-
sistance estimates versus truth when the bar-filter
results are combined with the delta-filter results.
Over time, we see that the estimates are converg-
ing to the true resistance values.
Capacity estimates evolve in a similar way to
resistance estimates. However, the time scale
of adaptation is much longer, since capacity is

very weakly linked to the output measurement.
Abrupt changes in capacity will not be tracked
very quickly; but, capacity fade due to normal
aging will be tracked very well.

Finally, Fig. 5 shows the current sensor bias es-
timate versus the true current-sensor bias as a
function of time. The bar-delta method is able
to quickly respond to the current-sensor bias and
converge to the neighborhood of its value.

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 6



0 5 10 15 20 25 30 35 40 45 50 55 60 65
−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

Time (min)

Cu
rre

nt
−s

en
so

r b
ia

s 
(A

)

Bar filter estimated current−sensor bias

 

 

True bias
Estimated bias
Estimate error bounds

Figure 5: Current sensor bias compared to estimate of
current sensor bias as a function of time. Error bars
on the estimate, from the SPKF, are also drawn.

6 Results: Algorithm speedup
The goal of the bar-delta filtering is to be both
accurate and fast. We have just demonstrated the
accuracy of the method; now, it remains to see
if the algorithm delivers on its promise of speed.
Table 1 lists some results of benchmarking vari-
ous configurations of the algorithm. In all cases,
the code being run was compiled hand-optimized
C code, running on a PowerPC platform. The
pack test scenario comprised more than one hour
of real-time data, so the CPU time per iteration
was computed as the run time for the code di-
vided by the number of iterations of the algo-
rithms performed.
The baseline simulation implemented one SPKF
per cell in a 100-cell pack. Each iteration re-
quired 5.272 ms of processor time to execute the
100 SPKFs. (The absolute CPU time is not as
important as the relative CPU time, since the al-
gorithms can be implemented on a variety of pro-
cessor platforms. However, it is clear that the test
platform is overkill in this example, since only
0.5% of the available CPU time is being used to
update the algorithms.)
The next simulation implemented the bar filter
only (using SPKF). The cell model used in this
simulation differed from the baseline simulation
in that it is estimating the current-sensor bias
state (the baseline simulation did not—in fact, it
is not obvious how to do so when multiple SPKFs
are being used). Due to the additional state be-
ing estimated, the speedup (calculated as base-
line simulation time divided by test case simu-
lation time) was not quite 100, as might be pre-
dicted, but is very close to it.
The final two simulations include both the bar fil-
ter and the delta filters. The first of these two sim-

ulations updated all 100 delta filters every itera-
tion, resulting in a speedup of 27.7 over the base-
line case. The second updated half of the delta
filters every iteration: the first 50 delta filters on
even iterations, and the second 50 delta filters
on odd iterations. Estimation accuracy was not
degraded, and a speedup of 42.9 was achieved.
By changing the number of delta filters updated
every iteration, we see that speedup of between
about 27 and 78 can be achieved overall.

7 Conclusion
It is necessary to monitor all SOC and SOH val-
ues in a battery pack in order to be able to ac-
curately estimate power (e.g., using the method
of [12]), and to monitor cell health. One method
to accomplish this is to independently estimate
SOC and SOH of all cells. That is, to execute N
SOC estimators and N SOH estimators, if there
are N cells in a pack, wired in series. If very ac-
curate methods are used (e.g., SPKF), this is very
slow.
We have introduced a method that can be vastly
faster and still gives accurate estimates.
! A single “bar filter” jointly estimates the pack-

average state and parameters;
! N individual “delta filters” estimate the dif-

ference between cell SOC and pack-average
SOC;

! N individual “delta filters” estimate the differ-
ence between cell and pack-average resistance;

! N individual “delta filters” estimate the differ-
ence between cell and pack-average inverse ca-
pacity;

! The individual cell filters can operate at a
slower rate than the pack filter.

This overall “bar-delta filter” achieves consider-
able speedup over the benchmark case. More-
over, it is able to estimate a pack current-sensor
bias very naturally, to keep the other estimates
unbiased by a drifting current sensor. In our im-
plementation we used SPKF for the bar filter and
the SOC delta filter, and EKF for the resistance
and inverse-capacity delta filter. However, the es-
timation schemes used for the different filters is
very flexible.

References
[1] S. Piller, M. Perrin, and A. Jossen. Methods

for state-of-charge determination and their
applications. Journal of Power Sources,
96:113–120, 2001.

Table 1: Performance measurements of various algorithm configurations.

Description of test (for pack comprising 100 cells) CPU time per iteration Speedup
One SPKF per cell 5.272 ms 1.0
One pack bar filter only, no delta filters 0.067 ms 78.7
One pack bar filter, 100 delta filters updated per iteration 0.190 ms 27.7
One pack bar filter, 50 delta filters updated per iteration 0.123 ms 42.9

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 7



[2] F. Huet. A review of impedance mea-
surements for determination of the state-of-
charge or state-of-health of secondary bat-
teries. Journal of Power Sources, 70(1):59
– 69, 1998.

[3] Shalini Rodrigues, N. Munichandraiah, and
A. K. Shukla. A review of state-of-
charge indication of batteries by means of
a.c. impedance measurements. Journal of
Power Sources, 87(1-2):12 – 20, 2000.

[4] Alvin J. Salkind, Craig Fennie, Pritpal
Singh, Terrill Atwater, and David E. Reis-
ner. Determination of state-of-charge and
state-of-health of batteries by fuzzy logic
methodology. Journal of Power Sources,
80(1-2):293 – 300, 1999.

[5] Gregory L. Plett. Sigma-point Kalman fil-
tering for battery management systems of
LiPB-based HEV battery packs: Part 1. In-
troduction and state estimation. Journal of
Power Sources, 152(2):1356–1368, 2006.

[6] Gregory L. Plett. Sigma-point Kalman fil-
tering for battery management systems of
LiPB-based HEV battery packs: Part 2. Si-
multaneous state and parameter estimation.
Journal of Power Sources, 152(2):1369–
1384, 2006.

[7] Gregory L. Plett. Results of temperature-
dependent LiPB cell modeling. In CD-
ROM Proceedings of the 21st Electric Ve-
hicle Symposium (EVS21), Monaco (April,
2005), 9 pages.

[8] Gregory L. Plett. Extended Kalman fil-
tering for battery management systems of
LiPB-based HEV battery packs—Part 1:
Background. Journal of Power Sources,
134(2):252–61, August 2004.

[9] Gregory L. Plett. Extended Kalman fil-
tering for battery management systems of
LiPB-based HEV battery packs—Part 2:
Modeling and identification. Journal of
Power Sources, 134(2):262–76, August
2004.

[10] Gregory L. Plett. Extended Kalman fil-
tering for battery management systems of
LiPB-based HEV battery packs—Part 3:
Parameter estimation. Journal of Power
Sources, 134(2):277–92, August 2004.

[11] Gregory L. Plett, Robert Billings, and
Martin J. Klein. Desktop and HIL val-
idation of hybrid-electric vehicle battery-
management-system algorithms. In Pro-
ceedings of SAE Congress 2007, April
2007. 7 pages.

[12] Gregory L. Plett. High-performance
battery-pack power estimation using a dy-
namic cell model. IEEE Transactions
on Vehicular Technology, 53(5):1586–93,
September 2004.

Authors
Gregory Plett received his Ph.D. in
Electrical Engineering from Stan-
ford University. He is Associate
Professor of Electrical and Com-
puter Engineering at the University
of Colorado at Colorado Springs,
and consultant to Compact Power
Inc. He specializes in state estima-
tion and control design for battery
management systems.

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 8


