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Abstract 
     The battery management system (BMS) of a 

hybrid-electric-vehicle (HEV) battery pack comprises 
hardware and software to monitor pack status and 
optimize performance.  One of its important functions 
is to execute algorithms that continuously estimate 
battery state-of-charge (SOC), state-of-health (SOH), 
and available power. The accuracy of these algorithms 
is  critical for  the       proper sizing  of  the  battery  pack. 
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If accurate algorithms are not available, the pack—already among the 
costliest and heaviest components of the propulsion system—must be over-
designed to compensate.   
 This article presents methods based on Kalman filtering theory to very 
accurately estimate the desired quantities. While the algorithms are 
mathematically advanced, they can be implemented on simple and inexpensive 
microprocessors.  The result is an important element of an economical, robust, 
and reliable HEV energy storage system. 
 
1. Introduction 
 This article presents advanced algorithms for a battery management 
system (BMS) for hybrid-electric vehicle (HEV) application.  We assume that 
the BMS must be able to estimate battery state-of-charge (SOC), instantaneous 
available power, and parameters indicative of the battery state-of-health (SOH) 
such as power fade and capacity fade, and be able to adapt to changing cell 
characteristics over time as the cells in the battery pack age.  The algorithms to 
be described accomplish these goals and have been successfully implemented 
on a Lithium-Ion Polymer Battery (LiPB) pack.  
 A hybrid-electric vehicle is one with both a gasoline (or diesel) engine and 
an electric motor.  In the most common configuration commercially available, 
both the engine and the motor are coupled directly to the power train, where 
the motor provides boost energy to supplement the engine and acts as a 
generator when coasting, braking, or when the engine can supply extra power 
to charge the battery pack.  Such “parallel-hybrid” systems are cost effective as 
their battery packs can be modestly sized. Even so, and because of the 
demanding requirements on a pack of limited capacity, advanced methods 
must be used to estimate SOC, SOH, and instantaneous power in order to 
safely, efficiently and aggressively exploit the pack capabilities. 
 The battery pack of an HEV comprises a number of sub-components: the 
cells themselves (typically wired in series to generate a high voltage, but 
sometimes also wired in parallel to develop higher currents), power electronics 
to disconnect the pack should there exist an unsafe operating condition, a 
thermal conditioning system, the electronic BMS, and sensors for voltages, 
current, and temperature.  The BMS is frequently microprocessor based, which 
allows flexibility in the kinds of algorithms that can be executed. 
 Various algorithms for SOC estimation (in particular) have been very well 
explained elsewhere in a few excellent tutorial articles [1,2]. Instead of 
duplicating these efforts, we focus here on the approach that has been the most 
successful in our own experience: variants of the ubiquitous Kalman filter, 
which is an algorithm for estimating the present value of the time-varying 
unmeasurable “state” of a dynamic system.  Kalman filters were introduced in 
1960 [3,4] in the context of estimating hidden system states for the purpose of 
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controlling a linear system, for which they are the optimal solution, and are 
now commonly employed in control systems, communications, defense, image 
processing, space, and GPS navigation applications. A unique benefit of the 
Kalman filter over other estimation approaches is that it automatically provides 
dynamic error-bounds on its own state estimates. By modeling our battery 
system to include the wanted unknown quantities in its state description, a 
Kalman filter estimates their values and gives error bounds on the estimates.  
We exploit this fact to give aggressive performance from our battery pack, 
without fear of causing damage by over-charge or over-discharge. 
 At first glance, the equations and theory behind Kalman filtering can 
appear opaque. It is obvious to ask whether the HEV BMS application requires 
such complexity. The answer to this question depends on the design 
specifications given to the BMS software engineers for the errors allowed on 
estimates of SOC, SOH, and maximum power. These specifications are often 
very aggressive since being able to optimize the cost, weight, size and reliability 
of major HEV systems is critical to maximizing the value of the HEV to the end 
customer1. In order to counteract imprecise algorithms, one has to over-design 
the rest of the pack—a one-time expense of algorithm development can quickly 
overcome the accumulated per-unit cost of an over designed battery pack. To 
that end, advanced algorithms are often warranted, and we do not know of any 
algorithms able to produce better estimates than those presented here. 
 Further, the simple algorithms typical of a portable-electronic battery pack 
just don’t work in the HEV environment. One reason is that the cells in an 
HEV battery pack are very rarely in an equilibrium state (ruling out simple 
voltage measurements to predict SOC via the cell’s OCV versus SOC 
relationship). This is due to HEVs requiring very high electrical current 
relative to the capacity of the cells, with present vehicles demanding up to ±20 
times the C-rate, and future systems presently in development requiring higher 
relative rates2. The rate profile (current as a function of time) for HEV is also 
very dynamic as HEVs are typically designed so that the battery/motor system 
handles the instantaneous load transients and the engine handles the average 
load [5,6].  Coulomb-counting methods also cannot be used as they inherently 
integrate  any  error  of  the  current      sensor, and  become unstable without some 
__________________________ 
 
1Of the components comprising the propulsion of an HEV, the costliest is the battery 
pack, which may represent 30−35% of the total cost of the propulsion system. The 
battery is among the heaviest components of the propulsion system as well. Therefore, 
careful design of the battery pack and the BMS can dramatically impact the lifetime 
affordability of an HEV. 
2The “C-rate” of a cell refers to the nominal capacity of the cell divided by one hour, 
and thus is the constant-current rate required to discharge a cell in one hour from a fully 
charged a priori condition. It is measured in amperes or milli-amperes. 
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reset mechanism. HEV battery packs are never fully recharged to a known 
SOC, so simple reset mechanisms are not available. Ad hoc combinations of 
these two approaches are often attempted, employing reset mechanisms and 
correction factors for age, temperature, and so forth, but we feel that the 
resulting complexity ends up to be greater than that of the Kalman filter.  In 
summary, we propose that the kinds of algorithms presented in this article 
provide the best solution for robust long-term deployment.  
 We now proceed by discussing requirements for a BMS in the HEV 
environment.  We then introduce the concept of model-based state estimation, 
present the sigma-point Kalman filter (SPKF) as an example, and proceed to 
show how model parameters can also be estimated using a “joint SPKF.”  Using 
the output of the joint SPKF, we show how to predict pack power and calculate 
cells to be equalized.  We present some simulation results and some conclusions. 
 

2. BMS algorithm overview 
 The HEV BMS performs many tasks, including communication with the 
vehicle controller, measuring cell physical quantities of interest (e.g., cell 
voltage, current and temperature), and managing cell balancing.  Here, we are 
only interested in the algorithmic considerations as motivated by the 
requirements imposed by the environment and the vehicle.  Figure 1 shows a 
simple block-diagram for the algorithm function.   
 When the ignition switch is turned on, the BMS initializes its main 
operating software and algorithms.  Then, once every measurement cycle (e.g., 
once per second as shown in the figure), voltages, temperatures, and current 
are measured.  Estimates of SOC, SOH, and available power are updated, and 
a decision is made as to whether cells in the pack require equalization (moving 
charge into/out of specific cells to achieve the same voltage or SOC in each 
cell in the series string [7]).  This process repeats until the vehicle is turned off, 
at which time the appropriate data is saved in non-volatile memory for the next 
time the vehicle is turned on. 
 The principal algorithms are all estimators of some quantity that cannot be 
directly measured.  Of primary importance is a method to accurately estimate 
the SOC of cells in the pack.  SOC can be defined carefully [8], but what        
is meant  is an  indication of    the fraction of charge remaining in each cell, from 
0% to 100%, available to do useful work. To use a vehicular analogy, it is 
similar to the dashboard gas   gauge     that    reads  “Empty” (0%) to “Full” (100%).   
  

 
 

Figure 1.  Algorithm control flow. 
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However, while there exist sensors to accurately measure a gasoline level in a 
tank, there is no sensor available to measure SOC. Further, precise SOC 
estimates provide the following benefits [9]: 
 
• Longevity: If a gasoline tank is over-filled or run empty, no harm is done 

to the tank. However, over-charging or over-discharging a battery cell 
may cause permanent damage and result in reduced lifetime.  An accurate 
SOC estimate may be used to avoid harming cells by not permitting 
current to be passed that would cause damage. 

• Performance: Without a good SOC estimator, one must be overly 
conservative when using the battery pack to avoid over/undercharge due 
to trusting the poor estimate. With a good estimate, especially one with 
known error bounds, one can aggressively use the entire pack capacity. 

• Reliability: A poor SOC estimator behaves differently for different driving 
profiles. A good SOC estimator is constant and dependable, enhancing 
overall power system reliability. 

• Density: Accurate SOC and battery state information allows the battery 
pack to be used aggressively within the design limits, so the pack does not 
need to be over-engineered.  This allows smaller, lighter battery packs. 

• Economy: Smaller battery systems cost less. Warranty service on a reliable 
system costs less. 

 
Knowledge of battery state of health (SOH) is also required.  SOH is partially 
described by diagnostic flags including simple measurements such as: “Does 
any voltage/ current/ temperature measurement exceed design limits”?  
Complete SOH estimation also requires more complex estimation: “Are there 
any cells with SOC above or below design limits”? “Are there any cells with 
self-discharge rate above some acceptable limit”? “Has the capacity of any cell 
faded below some minimum acceptable value”? “Does the internal resistance 
of any cell exceed some limit”? and so forth.  The pack may be serviced when 
SOH is not acceptable; SOH information may also be written to a data log for 
warranty purposes.  
 In this article, we describe SOC/SOH estimators based on joint sigma-
point Kalman filtering. These, in turn, are based on the framework of model-
based estimation, which is introduced in the next section. 
 
3. Model-based estimation 
 All forms of model-based estimation, of which the Kalman filter is one 
example, rely on a mathematical description of the dynamics governing the 
quantities being estimated. Here, we employ a “state-space” model of cell 
dynamics:  
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                                                                                      (1) 
 

                                                                                           (2) 
 
where  is the state vector at discrete-time index  is the measured 
system input vector at time  and  is unmeasured “process noise” 
(modeling inaccuracy of the cell model).  The system output is  and  
models sensor noise. The stochastic inputs  and  are assumed to be zero-
mean white Gaussian random processes with covariance matrices  and  
respectively. Equation (1) is called the “state equation”, (2) is called the 
“output equation”, and  and  are (possibly nonlinear) functions, 
defined by the particular cell model used. 
 To be more specific, in Section 8 we present a cell model where the 
system input vector  comprises the instantaneous cell current  The system 
output is the cell’s loaded terminal voltage—not at-rest open-circuit-voltage 
(OCV). The system’s state vector  in some way represents in summary form 
the total effect of all past input to the system so that the present output may be 
predicted solely as a function of the state and present input. Values of past 
inputs are not required. Our method constrains the state vector to include SOC 
as one component, so that SOC may later be estimated using some form of 
Kalman filter3.  
 Model-based estimation, then, is a recursive process to update an estimate   

 of the true state . Assuming for the moment that the model perfectly 
represents the cell, we can use the model to estimate what is happening in the 
cell in real time.  The following sequence of steps are repeatedly executed: 
 
• The actual input current to the cell is measured. This value is used as input 

to the model. 
• The model equations are evaluated to predict the present cell state and 

output voltage, with use of the measured input current and known (or 
adapted) model-equation parameters. 

• The actual cell voltage is measured.  If the predicted model’s state and 
parameters are exact, then there is no difference between the actual cell 
voltage and the model’s estimate.  Any difference is because of an error in 
the estimate of cell state or parameters.   

• The cell-model state prediction and parameter estimates are adapted to 
lower the cell voltage estimation error. 

____________________________ 
 

3Interestingly, some other reported methods for SOC estimation using Kalman filtering 
do not use SOC as a state variable [10,11]. These methods then do not have the ability 
to directly infer error bounds on their estimate of SOC. 
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• The updated state/parameter estimates are output to be used for whatever 
purposes are desired. 

• This process repeats every sampling interval (e.g., every one second). 
 
This same approach works even when the cell model is not in fact perfect, or when 
there is noise on the sensors, but adaptation of the model’s state and parameter 
estimates must be made more slowly because of the additional uncertainty. 
 In order to optimally perform the adaptation step, the algorithm must internally 
weigh uncertainties re. the model equations themselves, uncertainties re. the 
present state estimate, and uncertainties re. the values indicated by sensors. These 
are represented mathematically by covariance matrices of the appropriate variables. 
The variables themselves are understood to hold the expected value of the 
quantities that they represent. Since the algorithm must know these uncertainties, it 
has the added capability of being able to determine error bounds (for example,      
3-sigma or 6-sigma error bounds) on all estimated quantities. 
 To be more formal in our discussion of the steps of model-based 
estimation, we first define some notation. In the sequel, a superscript “–” 
denotes a predicted quantity, a superscript “+” denotes an updated estimate of 
that quantity, a circumflex “^” denotes an estimated quantity, a tilde “~” 
denotes an estimation error, and  denotes the covariance of its subscripted 
variable. Further, we define  to be the statistically expected value of its 
argument, and  to be the history of measurements until time 

. Different types of Kalman filter then exactly compute or approximate the 
following six steps repeatedly: 
 
Step 1: State estimate time update 
 The first step computes the state estimate time update, which predicts the 
present value of the state given past measurements: 
 

 
 
Step 2: Error covariance time update 
 The second step determines the predicted state-estimate error covariance 
matrix  based on a priori information and the system model. 
 

 
 

Step 3: Estimate system output 
 The third step is to predict the system’s output using present a priori 
information. 
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Step 4: Estimator gain matrix 
 The fourth step is to compute the optimal gain factor used when updating 
the state estimate, which is 
 

 
 
Step 5: State estimate measurement update 
 The fifth step is to update the state estimate using the measured cell 
voltage, the predicted cell voltage, and the estimator gain matrix.   
 

 
 
Notice that the output estimation error is scaled by the gain matrix and used to 
adapt  The gain m atrix tends to have large entries for states whose value is 
uncertain (high covariance) and small entries for measurements with a high 
degree of sensor noise. The gain matrix optimally combines new and old 
information in the filter. 
 
Step 6: Error covariance measurement update 
 The final step of the update mechanism is to update the state-error 
covariance matrix. 
 

 
 
This method is summarized in Table 2. 
 

4. Sigma-point kalman filters 
 For a linear system, under certain assumptions, the six steps just outlined 
can be performed exactly. For a nonlinear system, they can only be 
approximated. The most common approach is to use an extended Kalman filter 
(EKF), and we have reported some results using this technique [12,8,13].  
More recently, we have investigated another way to estimate these 
relationships for nonlinear systems—the sigma-point Kalman filter (SPKF) 
[14,15].   While         SPKF is mathematically  more   complicated  than  EKF, it  is  of 
the same computational complexity, and produces better estimates than EKF in 
most applications. We have previously reported some results using SPKF 
using a particular fourth-generation LiPB cell.  Here, we review the algorithms 
and present some results using a fifth-generation prototype LiPB cell presently 
in pilot-line production for HEV application. 
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Table 2 .  General sequential probabilistic inference solution. 
 

 
 
 The generalized KF steps that cannot be evaluated in closed form for  
general nonlinear systems are the expected values of  nonlinear  functions          of  a 
random variable in steps 1 and 3, and the covariance calculations in steps 2 and 4. 
EKF makes the dubious assumption in steps 1 and 3 that  
which is almost certainly not true for a nonlinear system.  For steps 2 and 4, it 
uses a truncated Taylor-series expansion of the nonlinearity to evaluate the 
covariances required. This is also problematic when the function being 
linearized is in fact quite nonlinear. Overall, these approximations may result 
in large losses in estimation accuracy and have been observed to result in 
unstable filters [16–18]. Sigma-point Kalman filtering is an alternate approach 
to generalizing the Kalman filter to state estimation for nonlinear systems.  
Instead of using Taylor-series expansions to approximate the required 
covariance matrices, a small number of function evaluations are performed 
instead. This has several advantages: (1) derivatives do not need to be 
computed (which is one of the most error-prone steps of EKF), also implying 
(2) the original functions do not need to be differentiable, and (3) better 
covariance approximations are usually achieved than using EKF, allowing for 
better state estimation, (4) all with comparable computational complexity to 
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EKF. A set of points (sigma points) is chosen so that the (possibly weighted) 
mean and covariance of the points exactly matches the mean and covariance of 
the a priori random variable. These points are then passed through the 
nonlinear function, resulting in a transformed cloud of points.  The a posteriori 
mean and covariance that are sought are then approximated by the mean and 
covariance of this cloud. Note that the sigma points comprise a fixed small 
number of vectors that are calculated deterministically—not like the Monte 
Carlo or particle filter methods. 
 Specifically, if the input random vector x has dimension n, mean  and 
covariance  then p + 1 = 2n + 1 sigma points are generated as the set   
 

 
 
with columns of  indexed from 0 to p, and where the matrix square root   

 computes a result such that  Usually, the efficient Cholesky 
decomposition [19,20] is used, resulting in lower-triangular R. The reader can 
verify that the weighted mean and covariance of  agree with the original 
mean and covariance if we define the weighted mean and weighted covariance 
as 
 

  
and

    
 

 as the ith column of , and both  and  as real scalars with the 
necessary (but not sufficient) conditions that  sum to one and that  
sum to one. Then, for a specific set of  we can show agreement 
between the weighted mean and covariance of , and the true mean and 
covariance of random variable x. Sigma-point methods differ only in these 
weighting constants: values for the two most common methods—the 
Unscented Kalman Filter (UKF) [17,18,21–24] and the Central Difference 
Kalman Filter (CDKF) [25–27]—are summarized in Table 1. The UKF is 
derived from the point of view of estimating covariances with data rather than 
Taylor series. CDKF uses Stirling's    formula   to    approximate  derivatives  rather  
than  using Taylor series.  Although the derivation is quite different than UKF, 
the final method is essentially identical. The CDKF has only one “tuning 
parameter”  which makes implementation simpler. It also has marginally 
higher theoretic accuracy than UKF [26], so we focus on this method in the 
application sections later. 
 To use SPKF in an estimation problem, we first define an augmented 
random  vector    that  combines  the  randomness of     the state, process noise, 
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Table 1.  Weighting constants for two sigma-point methods. 
 

 
 

 is a scaling parameter, with  Note that this α is different 
from  and  κ  is either 0 or 3 − L. β incorporates prior information and  may take 
any positive value. For Gaussian RVs, β =2 and   
 
and sensor noise. This augmented vector is used in the estimation process as 
described below. 
 
SPKF step 1: State estimate time update. Each measurement interval, the  state  
estimate  time  update  is  computed  by  first   forming    the augmented a posteriori 
state estimate vector for the previous time interval:  and 
the augmented a posteriori covariance estimate:  
These factors are used to generate the  p + 1 sigma points:  
 

 
 
 From the augmented sigma points, the p + 1 vectors comprising the state 
portion  and  the  p + 1 vectors comprising the  process-noise portion    
are extracted. The process equation is evaluated using all pairs of   and   

 (where the subscript i denotes that the ith column is being extracted from 
the original matrix), yielding the a priori sigma points  for time step k.  
Finally, the a priori state estimate is computed as   
 
SPKF step 2: Error covariance time update. Using the a priori sigma points 
from step 1, the a priori covariance estimate is computed as  
 

 
 
SPKF step 3: Estimate system output yk. The system output is estimated by 
evaluating the model output equation using the sigma points describing the 
spread in the state and noise vectors. First, we compute the points 

 The output estimate is then  
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SPKF step 4: Estimator gain matrix Lk. To compute the estimator gain 
matrix, we must first compute the required covariance matrices. 
 

 
 
Then, we simply compute   
 
SPKF step 6: Error covariance measurement update. The final step is 
calculated directly from the optimal formulation:  The 
SPKF solution is summarized in Table 3. 
 

Table 3.  Nonlinear sigma-point Kalman filter. 
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5. Joint sigma-point filtering 
 So far, we have assumed a constant cell model.  However, when applying 
these procedures to estimate battery SOC, for example, we encounter a 
possible source of error: Not all cells are created equal; there is always some 
cell-to-cell variation, which only increases as the cells age, both in 
accumulated cycles and in calendar life.   
 Some of the critical parameters, such as cell resistance and capacity, 
directly limit the pack performance through “power fade” and “capacity fade”. 
The state-of-health (SOH) of a battery is often described using these values.  It 
is important to be able to estimate these and other parameters to: (1) maintain 
an accurate model for SOC estimation, and (2) understand the present battery 
state of health, and to predict remaining service life. 
 Keeping in mind the previous discussion on estimating SOC, it is apparent 
that the quantities descriptive of the present battery pack condition exist on two 
time scales. Some change rapidly, such as SOC, which can traverse its entire 
range within minutes. Others may change very slowly, such as pack cell 
capacity, which might change as little as 20% in a decade or more of regular 
use. The quantities that tend to change quickly comprise the state of the 
system, and the quantities that tend to change slowly comprise the time-
varying parameters of the system.  
 The method used to estimate SOC can be modified to concurrently 
estimate both the quickly time-varying state and the slowly time-varying 
parameters by augmenting the cell model state vector with the model 
parameters and simultaneously estimating the values of this augmented state 
vector. This method is called joint estimation. A single filter combines the state 
and parameter estimates, so that both are adapted concurrently.  Present state- 
and parameter-vector estimates are provided continuously as the electrochemical 
cell operates.   
 This simple extension to standard SPKF is accomplished by revising the 
mathematical model of cell dynamics to explicitly include the parameters as 
the vector  
 

 
 
Non-time-varying numeric values required by the model may be embedded 
within  and  and are not included in . 
 To use the Enhanced Self-Correcting cell model from Section 8 as an 
example, the possibly time-varying parameters comprise the following: the 
Coulombic efficiency  the total capacity C, the filter poles  the 
filter weighting factors  the cell discharge and charge resistances 
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R+ and R− , the hysteresis rate constant  and the maximum level of hysteresis 
M. Combined, they are 
 

 
 
We assume that there is a true value for  that describes the cell under 
consideration, and wish to adapt an estimate  to converge to the true value.  
To do so using a Kalman-filtering approach, we require a state-space model for 
the “dynamics” of the true parameters 
 

 
 
This equation states that the parameters are essentially constant, but that they 
may change slowly over time by some driving process, modeled by a process 
rk  of small fictitious “noise”.  
 Within a joint filter, the dynamics of the state and the dynamics of the 
parameters are combined to make an augmented system. We can write this in 
one of two ways: 
 

        

or

       
 
The second notational convention combines the state and parameter vectors 
into a single vector  and combines the state process noise and parameter 
process noise into a single vector  Similarly, the state and parameter 
dynamics are combined into the functions  and   
 With these new conventions, we see that the parameters of a system 
simply augment the state of the cell model, and the SPKF method can be 
applied directly to this augmented model. The method is summarized in      
Table 4. 
 
6. Power estimation  
 One advantage of the proposed methodology for state and parameter 
estimation is that the present estimates may be used as input to the other BMS 
algorithm functions in Fig. 1. In this section we describe how the estimates 
help determine the dynamic power capability of the pack; in the next section 
we describe how it may be used to help equalize the pack to maximize 
availability. 
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Table 4.  Nonlinear sigma-point Kalman filter for joint estimation. 
 

 
 
 In the HEV application, it is necessary to know how much power is 
available to be sourced or sunk by the battery pack at any point in time.  These 
values must be carefully calculated in such a way that the pack will not be 
damaged by over/under charge, over/under voltage, or by exceeding a design 
current or power limit when the calculated limits are enforced. 
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 The power-estimation problem may be described as follows: Find the 
maximum battery charge and discharge power (based on present battery pack 
conditions) that may be maintained for m time samples without violating pre-
set limits on cell voltage, state-of-charge, power, or current.  Here, we denote 
the number of cells in the battery pack by N; cell voltage at time  for           
cell number  in the pack by  which has operational design limits  

 similarly, state-of-charge  has operational design limits 
 cell power  has operational design limits 

 and cell current by  has operational design limits 

 Any particular limit may be removed if desired by replacing 
its value by ±∞, as appropriate. All limits may furthermore be functions of 
temperature and other factors pertaining to the present battery pack operating 
condition. Here, we assume that discharge current and power have positive 
sign and charge current and power have negative sign.   
 Available power is determined by first finding limits on current such that 
SOC remains acceptable, then finding current limits such that voltage remains 
acceptable. The resulting current and associated power values are saturated at 
their respective limits. This may be done as follows. First, for a constant 
current i, the SOC recurrent relationship is: 
 

 
 
where  is the predicted SOC  time samples or  hours into the 
future, and  C is the cell capacity. The SOC design limits impose maximum 
discharge current 
 

 
 
and minimum charge current (but maximum magnitude) 
 

 
 
 Voltage constraints are satisfied by finding the constant input  that 
causes    to obtain a design voltage, where  is 
found by simulating (1) for   time samples. A bisection (or similar) search 
algorithm [28] can be used to solve the relationship  to find 

 and   to find  
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 Discharge and charge currents with all limits enforced are computed as 
 

 
 
and power may be calculated: 
 

 
 

7. Equalization via SOC  
 Over time, the pack’s cells may become “out of balance” as small 
differences in their individual dynamics—principally, in their Coulombic 
efficiencies and capacities—cause their states of charge to drift apart from each 
other as the pack operates. The danger is that one or more cells may eventually 
limit the discharge ability of the pack by having state-of-charge (SOC) much 
lower than that of the others, and/or that one or more cells may limit the charging 
capacity of the pack by having SOC much higher than that of the others.  In an 
extreme case, the pack becomes incapable of either charge or discharge if one 
cell is at the low SOC limit and another is at the high SOC limit, even if all other 
cells have intermediate SOC values. Packs may be balanced or equalized by 
“boosting” (individually adding charge to) cells with SOC too low, “bucking” or 
“shunting” (individually depleting charge from) cells with SOC too high or 
“shuffling” (moving charge from one cell to another).  
 In conventional equalization methods, determining which cells must have 
their charge levels adjusted is generally done on the basis of cell voltage alone.  
The pack is considered to be properly balanced if all cell voltages are the same, 
perhaps within some tolerance.  If a cell’s voltage is too high, then charge must 
somehow be depleted from the cell.  If a cell’s voltage is too low, then charge 
must be added to the cell. Various electronic means are available to perform 
the equalization, either automatically, or under microprocessor control.  These 
include:  
 
• Shuffling charge: Charge is electronically moved from one or more cells 

with SOC too high to one or more cells with SOC too low, perhaps using a 
switched capacitor or a transformer method. 

• Depleting charge from cells with SOC too high (e.g., with a switched 
resistor). 

• Adding charge from an external source, or from the pack itself (e.g., with a 
DC-DC converter). 
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Any of these electronic means may be used with the method to be described 
here as well—the electronic means are very well described in reference 
[moore]. 
 With side information comprising the individual cell SOC estimates, and 
individual capacities and/or cell Coulombic efficiencies, available from a joint 
SPKF, another opportunity presents itself. We propose that equalizing cell 
voltage is only approximately the correct thing to do.  Recall that the purpose 
of equalization is to maintain the battery pack in a state where the maximum 
level of charge and discharge power is available for use. Cells that limit the 
pack availability may then be boosted or bucked in order to improve 
performance. We present a method to do so. 
 Cells are equalized in order to maximize the available power from the 
battery pack. For SOC of cell n at level  the “distance” in ampere-hours 
from the upper limit (present charge capacity) is 
 

 
 
and the distance in ampere-hours from the lower limit (present discharge 
capacity) is 
 

 
 
where   is the capacity of cell n , in ampere-hours and  is its Coulombic 
efficiency. If all cells have equal  then no cell will limit pack charge 
capacity. However, if the capacity  of one cell is lower than that of 
others, it will limit the ability of the pack to accept charge. Similarly, if all 
cells have equal  then no cell will limit pack discharge capacity.  If 
the capacity  of one cell is lower than the others, it will limit the 
ability of the pack to supply charge. 
 We can use this information to derive a simple procedure to determine 
which cells require equalization. 
 

1. Compute  for all cells, and sort from smallest to largest. The cells 
with smallest value may benefit from having some charge depleted (via 
bucking, charge shuffling, or energy transformation) prioritized in reverse 
order by the magnitude of its . 

2. Compute  for all cells, and sort from smallest to largest. The cells 
with smallest value may benefit from having charge added (via boosting, 
charge shuffling, or energy transformation) prioritized in reverse order by 
the magnitude of its  . 
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3. If charge shuffling is available, it should be shuffled from the cells with 
minimum  to cells with minimum , prioritized in reverse 
order by the corresponding magnitudes. 

 
 The SPKF may also contribute the estimation error bounds from the SOC 
estimate to help determine when to stop equalization.  For example, one might 
turn off equalization if the difference between maximum and minimum 

 and the difference between maximum and minimum  falls 
within  where “fn( )” is some function and  is the estimated 
covariance of the SOC estimation error. Also, if the same cell is targeted for 
both boosting and bucking, it is the cell limiting performance whether or not its 
SOC is changed, so equalization may be turned off. 
 If cell capacity information is not individually available, then the nominal 
capacity  may be used. If cell Coulombic efficiency information is not 
individually available, then the nominal efficiency  may be used. If so, the 
procedure then equalizes SOC, which is not exactly the same as equalizing cell 
voltage. If all cell dynamic characteristics are equal, then the method becomes 
the same as equalizing by voltage. 
 
8. ESC model 
 The cell model that we use in this article is one that we have called the 
“enhanced self-correcting” (ESC) cell model [8,29,30], which has equations 
that describe the evolution of SOC, polarization voltages, and hysteresis, and 
which takes into account open-circuit-voltage and ohmic losses. 
 The basis for the SOC state-equation is developed as follows: If  

 we know that  where C is the 
nominal capacity of the cell, i(t) is the cell current at time t, and  is the 
Coulombic efficiency of the cell. A discrete-time approximate recurrence may 
then be written as  where ∆t is the sampling period 
(in hours).  This recurrence is used to include SOC in the state vector of the 
cell model as it is in state equation format already, with SOC as the state and   
as the input.   
 The dynamics of the change of polarization voltage are also captured       
by a state equation. We add “filter states” with linear dynamics: 

 The vector α has N filter “poles”, with  for 
stability, corresponding to time constants of the polarization voltage dynamics.  
We use N = 2. 
 A further phenomenon captured by a state equation is that of hysteresis.  A 
cell that has recently undergone a charge event will have a higher rest voltage  



Gregory L. Plett 20

than one that has undergone a discharge event, even at the same SOC.  That is, 
voltage  does  not         decay to           OCV, but retains a factor based on the hysteresis of  
the cell4. A hysteresis state implementing a linear-time-varying difference  
equation may be modeled as:  
 

 
 
where  represents the maximum hysteresis voltage at the present 
temperature, and   is a hysteresis rate constant.  
 The three components of the system state are combined: 

 The equations for  and  also combine to form 
the vector function .  
 The cell terminal voltage is modeled by the output equation . With the 
states of the system as defined, the ESC model computes: 

 The voltage is computed as the sum of the 
open-circuit-voltage at the present SOC, plus a weighted sum of the 
polarization voltage states, minus ohmic losses, plus hysteresis.  A further 
constraint on  is that during a constant-current dis/charge, the polarization 
filter voltages must converge to zero so that  (plus 
hysteresis) [8,29]. 
 The ESC-model form is now defined.  In order to implement the model for 
a specific cell electrochemistry, however, we require knowledge of the 
parameters of the model. Specifically, we must determine the OCV versus 
SOC relationship, the filter time constants α, the number of filter states  
hysteresis rate factors, and so forth.  Details on how this has been done on the 
cells in question in this article may be found in [30]. 
 

9. Simulation results 
 In this section, we present some results obtained using the proposed 
algorithms.  In order to do so, we would ideally present estimates of SOC (etc.) 
plotted versus true values of SOC for some example tests. We immediately run 
into a problem, however: regardless of which BMS estimation algorithm is 
used, the primary difficulty when validating any such algorithm on physical 
_________________________ 
 

4We note that hysteresis is not a phenomenon generally associated with lithium-ion 
systems, since most applications have been in the light portable electronics area where 
SOC accuracy is not as critical as in the HEV application and where temperatures are 
not as extreme. It is, however, very pronounced at low temperatures and can lead to 
SOC errors as large as ±40% if the estimate is based simply on OCV (even with full 
cell relaxation.) 
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cells is that the “truth” values are not known. There are no sensors that can 
directly measure SOC, SOH, or available power. At different points in time, 
laboratory tests can be performed that can be used to determine a posteriori 
what the SOC/SOH/power was at that time, but cannot determine 
SOC/SOH/power in real time, as the battery pack operates. 
 We have developed a simulation-based validation methodology as one 
component of a strategy that overcomes this obstacle [31]. A software 
simulator of cell dynamics first synthesizes various driving, temperature, 
parameter, and sensor-fault profiles for the battery pack being modeled. All 
internal variables that are dependent on the cycling history of the cell (e.g., 
SOC/ SOH/ power) are known to the software simulator, so “truth” values are 
established.  The input-output behavior of this model has been tested against 
physical cells, and works well. We call this the “Data Generator System” 
(DGS).  The BMS algorithms are then executed using this synthetic cell data as 
input, and the algorithm results are compared to the “truth” values.5  
 The synthesized data was generated using a model of a fifth-generation 
prototype LiPB cell that is very similar to the one presented in [14,15],          
but with a somewhat higher capacity. Root-mean-square (RMS) model       
error versus cell tests conducted using an Arbin BT2000 are on the order of            
5–10 mV over all operating conditions. 
 
9.1. Description of tests 
 Figure 2 shows plots of the cell-current and cell-voltage profiles for the 
tests used to illustrate results.  A single cell was simulated.  The current profile 
comprises: first, a charge-neutral UDDS drive cycle, followed by a one-minute 
rest, a 2C charge for one minute, and another one minute rest; second, a  
charge-neutral US06 drive cycle, followed by a one-minute rest, a 4C 
discharge for one minute, and another one minute rest; third, a charge-neutral 
NYCC drive cycle, followed by  a  one minute  rest. The maximum charge 
current was nearly 10C and the maximum discharge current was nearly 16C.  
This current profile was chosen to demonstrate that the algorithms work with a 
variety of excitation: realistic urban, highway, and mountainous drive cycles, 
rest intervals, and constant-current events. 
______________________________ 
 
5We acknowledge that this method is no substitute for actual testing of real cells. 
However, it can help to minimize the amount of this testing that is required if a careful 
design-of-experiments approach is taken. A balanced overall validation strategy 
therefore comprises a large suite of desktop validation tests and a smaller suite of real-
time tests on physical battery packs. We present this “desktop validation” means here 
sine it gives an unequivocal truth value for the purpose of evaluating the algorithms 
themselves. 
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Figure 2.  Profiles of current and cell voltage versus time for the tests described herein. 
 
9.2. SOC estimation 
 Figure 3 shows plots of true cell SOC for this test, estimated SOC, and 
SOC estimation error. The SPKF was initialized with an SOC estimate based 
on the first voltage reading from the cell (interpreted as OCV). The SOC 
estimation error is negligible in this test. To more clearly show this, the right 
frame shows estimation error (which is computed as true SOC minus estimated 
SOC). The error bounds should always encompass the true value in the left 
plot; similarly, they should always encompass the “zero” point in the right plot.  
This they do, so we see that the SOC estimation algorithm works very well in 
an ideal situation. 
 It is also interesting to ask whether the SOC estimation method is robust to 
various forms of non-ideal situations. We have performed numerous 
experiments where we purposely set the initial state of the SPKF to an invalid 
point to see if the algorithm is able to converge to the truth value, and how 
quickly we might expect it to do so.  Figure 4 shows two cases of this.  In the 
left frame, SOC was intentionally initialized to 25% rather than the true value 
of 50%.  We see that the SOC estimate quickly converges on the true value, 
although  the  error  bounds  are  not  accurate  for  the first 15 seconds or so of 

    

 
 

Figure 3.  Plots of true SOC, estimated SOC, and SOC estimation error.  
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Figure 4.  Plots of SOC estimation error and true resistance versus resistance estimate 
when the SPKF was intentionally initialized with bad values to test robustness. 
 
operation. In the second frame, the dc resistance state was intentionally 
initialized to 1 mΩ  rather than the correct value, which is closer to  2.25 mΩ. 
We see that the resistance state converges to the true value in about               
ten minutes (and while it is converging   the     SOC   estimate is  still reliable). Note 
that in practice we expect resistance to change over periods of  years and not 
minutes, so the SPKF adaptation rate is much faster than absolutely necessary. 
 
9.3. Power estimation 
 Figure 5 shows plots of maximum (absolute) charge current and power 
that the cell is dynamically capable of at every point in the test. This “truth” 
value was calculated for the cell in the same way as the estimated value, but 
with exact knowledge of the cell’s true state and parameters.  The estimates are 
dynamically computed using the power-estimation method described earlier, 
coupled with the SPKF’s estimate of the present cell state and parameters.  
Due to small errors in (primarily) the SPKF’s estimate of resistance, capacity, 
and SOC, there are corresponding small  errors in power estimate.  In this case,  
 

 
 
Figure 5.  Plots of maximum (absolute) charge current and power compared to their 
estimated values. 
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the root-mean-squared (RMS) current estimation error was less than 2 A, and 
the RMS power estimation error was less than 9 W. 
 
10. Conclusions 
 This article has presented algorithms based on sigma-point Kalman 
filtering   that   may       be      used           to  estimate  battery  pack  SOC  and  parameters 
indicative of SOH, such as resistance and capacity. The output of these 
algorithms  may  further  be  used as  input  to  methods  that estimate available 
power or determine which cells require equalization.  While the algorithms are 
mathematically complex, they are computationally feasible and have been 
implemented on a simple 16-bit microcontroller for a medium-sized HEV 
pack. We feel that the one-time cost in implementing an advanced algorithm in 
software is on the whole more affordable than the accumulated per-unit costs 
of a pack that is over-designed to compensate for poor algorithms.  
 We have elsewhere reported results with measured cell data—here we 
present results using synthetic data, where the advantage is that the “true” state 
and parameter values are known exactly, so that errors in estimation may be 
computed exactly. A properly initialized filter will have good estimation 
performance—we rarely see SOC errors greater in magnitude than 3%. A 
poorly initialized filter converges to the truth values over time.  We have found 
the time constants to be sufficiently fast. 
 In conclusion, we propose that the kinds of algorithms presented here can 
enhance lifetime affordability of HEV, and present the best algorithmic 
solution for long-term deployment. 
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