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Abstract. This chapter outlines our research efforts toward developing
a cooperative target localization method based on multiple autonomous
unmanned aerial vehicles (UAVs) that are outfitted with heterogeneous
sensors. The current focus of the research includes (1) optimizing the
UAV trajectories to place them at desired locations at desired times
to capture target locations, (2) cooperative sensor scheduling, and (3)
intelligent fusing of multiple sensor measurements to accurately estimate
the position and velocity of a target. The focus of this paper is the
sensor-fusion task. One might consider addressing this problem using
some form of Kalman filter. However, a complicating factor in the present
application is that sensor readings arrive out-of-sequence to the sensor-
fusion process. For example, there is non-deterministic latency in the
inter- and intra-UAV communication channels. We address this problem
by developing an out-of-order sigma-point Kalman filter (O3SPKF).

1 Introduction

Detecting and localizing targets using multiple cooperative heterogeneous sen-
sors is a challenging problem that can directly impact military and law-enforce-
ment applications such as intelligence, surveillance, and reconnaissance as well
as civilian applications such as search-and-rescue and forest-fire early detec-
tion. The particular solution of our interest must address a number of chal-
lenging requirements: (a) covert/passive sensing must be used; (b) the dynamic
characteristics of the target are unknown; (c) the target is episodically mobile;
and (d) the target is intermittently occluded from particular sensing mecha-
nism(s). The cooperative method proposed in this paper plays an important
role in our larger overall goal to develop a multiple cooperative UAV system
that can autonomously search, detect, and localize multiple targets [1,2]. Our
solution addresses these requirements using a flight of small autonomous UAVs
with heterogeneous sensing capabilities. Multiple autonomous UAVs offer certain
advantages over other conventional sensor platforms. They offer robustness in
the presence of a loss of members; can quickly search a large area; can operate
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using a decentralized but cooperative control algorithm, requiring minimal hu-
man intervention; and they are small and relatively inexpensive, allowing quick
and easy deployment.

Each UAV carries a suite of one or more sensors including perhaps: radio fre-
quency (RF) sensors to detect and determine direction-of-arrival (DOA), time-
difference-of-arrival (TDOA) and/or frequency-difference-of-arrival (FDOA); in-
frared sensors to detect heat signatures; and optical image sensors. Due to cost
considerations and payload constraints, it is not desirable for every UAV to have
a full complement of sensing capability. In our implementation, when a target is
initially detected by one UAV, a small formation of UAVs comprising comple-
mentary heterogeneous sensors is autonomously assembled to localize the target.
The UAVs then cooperatively locate the target by combining the sensor infor-
mation collected by heterogeneous sensors onboard the UAVs. The output of the
localization process gives an estimate of the target’s position and velocity and
provides error bounds on the estimate.

We integrate dynamic sensor fusion and target localization using a modified
sigma-point Kalman filter (SPKF). SPKFs are a generalization of the ubiquitous
Kalman filter [3,4] to problems with nonlinear descriptions.1 The problem specif-
ically addressed in this chapter is that sensor readings may arrive out-of-sequence
to the fusion process due, for example, to non-deterministic communication-
channel latency between UAVs. A similar issue was solved in [11] where the
latency was known and deterministic. However, in our case, the latency is not
known a priori and is variable, so we take quite a different approach, which we
have named the “out-of-order sigma-point Kalman filter” (O3SPKF).

This chapter proceeds by first outlining several approaches that may be taken
to handle out-of-order measurements. Sigma-point Kalman filters are then re-
viewed to provide background for the development of the O3SPKF. To illustrate
the results, we then give an example model of target dynamics, the overall sim-
ulation system used, and some results. Finally, we close with some concluding
remarks.

2 Approaches to Handling Out-of-Sequence
Measurements

There are a number of straightforward approaches to handling out-of-sequence
measurements that might be considered in a target-localization application.
These include the methods that we call the “simple approach” and the “buffered
approach,” which will be described below. The O3SPKF method is perhaps not
quite as straightforward, but has performance advantages, as will be shown. All
of these methods are based on sigma-point Kalman filtering, which is itself ex-
plained in Section 3. We limit ourselves to this one technology to make a valid

1 One variety of SPKF is the unscented Kalman filter (UKF) [5,6,7], which has been
used to locate targets using TDOA measurements [8]. We use the central difference
Kalman filter (CDKF) [9,10] here since it has slightly higher theoretic accuracy [10]
and requires fewer algorithm parameters be tuned.



comparison of results.2 The differences between the methods we describe in this
chapter reside in either (1) how the data is made available to the SPKF, as in
the “simple” approach and in the “buffered” approaches, or (2) how the SPKF
is modified to be able to accommodate out-of-sequence measurements, as in the
O3SPKF approach.

Before we outline the methods themselves, it is instructive to consider the
method for evaluating their performance. A number of important metrics might
be considered: What is the computational complexity of the algorithm? What
is the required amount of auxiliary memory/storage for the algorithm? What
is the estimation accuracy of the algorithm? For the methods described in this
chapter, the first two questions are quite straightforward to answer. The third
requires more discussion. The issue lies in the question “How does one compute
a localization error estimate at an arbitrary time, since the filter is only updated
at random, asynchronous points in time?”

To clarify this explanation, we define some notation. Let tm be the time a
particular measurement is taken, ta be the time that measurement arrives for
processing (ta = tm + dt, where dt is the transport/processing delay), tf be the
time the measurement arrives at the filter (tf = ta +dq, where dq is the queueing
delay), tx be the time associated with the filter’s most recent state estimate, and
t be the present (real) time. Further, let x(t) be the true state at time t and x̂(t)
be an estimate of the state corresponding to time t.

Control decisions need to be made based on x̂(t); however, the filter only
“knows” x̂(tx) corresponding to the timestamp of the measurement most recently
incorporated into the filter’s estimate. Since (with probability one) t != tx, we
must define a means to propagate the filter’s most recent estimate x̂(tx) forward
in time to predict x̂(t). This can be done using the target’s motion-model state
equation. Note that x̂(tx) has incorporated all measurements with tf < t, but
has not necessarily incorporated all measurements with ta < t or tm < t due
to the delays involved. We begin to suspect that there will be a definite cost
to transmission latency: not all measurements taken prior to the present time
will be included in the target position estimate, thus degrading accuracy of the
state prediction. Furthermore, there will be a cost to queueing latency since the
greater the difference t − tx, the greater length of time we need to predict over,
further degrading accuracy. The ad-hoc methods that we describe in this chapter
to process out-of-sequence measurements take the approach of trying to manage
queueing latency to improve the accuracy of the estimates. We will see that the
O3SPKF approach improves on these ad-hoc methods by adding no latency, and
making better use of all available measurements.

The Simple Approach to Handling Out-of-Sequence Measurements. Since we sus-
pect that latency will degrade our real-time estimate of target state, our first

2 We have found the SPKF to give a very good tradeoff between computational com-
plexity and accuracy of location estimates, but we recognize that if additional compu-
tational resources were available, a technology such as a particle filter might produce
even more accurate estimates.



ad-hoc approach is to simply discard all measurements that arrive at the filter
out-of-sequence. That is, if a particular measurement has tm < tx, that mea-
surement is discarded. We call this the “simple” approach.

The Buffered Approach to Handling Out-of-Sequence Measurements. The simple
approach has the beneficial property that it adds no latency (dq = 0). However,
many potentially useful measurements are discarded. We will see later, that if
the simple approach is used with UAVs having multiple sensors, it is possible
that only the measurements taken by one of these sensors are used if the pro-
cessing time required by the sensors is quite different. Therefore, we seek means
whereby dq may be adjusted to provide improved target state estimates without
introducing significant complexity.

The method we call the “buffered” approach is one way to do this. We form a
buffer of N measurements. The oldest measurement in the buffer has timestamp
denoted tmin. When a new measurement arrives, we compare its timestamp tm
against tmin. If tm < tmin, the measurement is discarded, as in the simple ap-
proach. However, if tm ≥ tmin, the oldest buffer measurement is removed from
the buffer and is used to update the SPKF, and the presently received measure-
ment is added to the buffer. The filter time tx will be updated to tmin. If the
buffer is very large, few measurements will be discarded—which we expect will
result in near-optimal estimation of x̂(tx)—but since the difference between t
and tx will generally be large—we expect poorer estimation of x̂(t). If the buffer
is very small, many measurements will be discarded—resulting in poor estima-
tion performance of x̂(tx) and by extension of x̂(t)—but the difference between
t and tx will generally be small. In the limit as the buffer size goes to zero, the
buffered approach becomes the simple approach, and there will be some size N
that optimizes the estimation performance of x̂(t).

When determining the buffer size N , one might consider modeling the inter-
UAV transmission latency (the dominant effect) as an exponential random vari-
able, as is common in communication theory. Then, if µ is the expected latency,
68% of measurements are received with dt < µ, 86% of measurements are re-
ceived with dt < 2µ, and 95% of measurements are received with dt < 3µ. We
might then choose N = $kµ/Ts%×number of UAVs×number of sensors per UAV,
where k ∈ {1, 2, 3} selects the average percentage of measurements queued and
used in the filter, and Ts is the inter-sample interval for each sensor.

The O3SPKF Approach to Handling Out-of-Sequence Measurements. The simple
and buffered approaches both result in measurements arriving at the SPKF
in order (either by discarding all out-of-sequence measurements, or using the
buffering mechanism to sort the great majority of measurements in-order, while
still discarding a few out-of-sequence measurements). The approach we propose
in this chapter is fundamentally different from either of these in that it modifies
the SPKF itself to be able to accommodate the out-of-sequence measurements.
If a new measurement arrives with tm ≥ tx, it is incorporated in the filter state
using the standard SPKF steps and tx is updated to tm. However, if a new
measurement arrives with tm < tx, an alternate sequence of steps is executed to



update the filter state estimate using the novel information regarding the system
state at time tx in this stale measurement, and the filter time remains at tx.

The O3SPKF is not a buffering method, so incurs no additional latency (dq =
0). Furthermore, it never discards measurements; therefore, we expect that it will
give better estimates than the other two approaches. Also, the O3SPKF is of the
same computational complexity as SPKF, so we incur no processing penalty for
using it. However, because the O3SPKF does not discard any measurements (as
do the simple and buffered methods), it will execute more often. Finally, since
the O3SPKF does not buffer measurements it has no additional auxiliary storage
requirements.

We note in passing that there are some other approaches to fusing out-of-
order measurements that bear some similarity to O3SPKF, which we did not
consider while preparing this chapter. One method maintains a buffer of sen-
sor data, but unlike the simple buffered methods proposed above, updates the
SPKF immediately upon receiving a new measurement. The SPKF state and co-
variance estimates are stored along with the corresponding measurement in the
buffer. When an out-of-order measurement arrives, the filter state is updated by
first “rolling back” to the estimate immediatly prior to that measurement, and
the SPKF algorithm is applied repeatedly to all following measurements in the
buffer—potentially resulting in many SPKF update steps per new data point.
This method gives the best achievable results, but we did not consider it due
to its requirements of a potentially large buffer and challenges in a real-time
implementation. A second method is similar—upon receiving an out-of-order
measurement, a Kalman smoother is run backward in time from tx to tm (po-
tentially requiring many iterations of the smoother steps as each data point is
considered again) to make a smoothed estimate of the state at time tm. The
present measurement is then incorporated into x̂(tm) via a measurement update
equation, and the state estimate is re-propagated to time tx [12]. The O3SPKF
has similar steps to this method: It also propagates the present state back in
time, but it always does this in one step (not requiring a buffer of measure-
ments). Additionally, it does not update the state estimate at time tm; rather,
covariance calculations are performed using the present and prior data that allow
direct updating of the state estimate at time tx using the old measurement.

We now present the SPKF and the O3SPKF. Readers familiar with either
the UKF or SPKF might skim the next section to discover the notation that
we use, and to see how we partition the SPKF into six steps which are then
mirrored in the O3SPKF in Section 4.

3 Sigma-Point Kalman Filters (SPKF)

Kalman filters are an intelligent (and sometimes optimal) way to estimate the
unmeasurable “state” x(t) of some dynamic system given measurements of a
signal u(t) possibly affecting that state (the dynamic “input”, sometimes called
a forcing function), and measurements y(t) (the dynamic “output”) related to
linear or nonlinear combinations of members of that state and u(t) . Here, we



assume that the state of the target to be estimated comprises its position and
velocity: that is, x(t) = [px(t), py(t), vx(t), vy(t)]T , where px(t) is the “x” position
coordinate of the target, py(t) is the “y” position coordinate of the target, vx(t) is
the “x” velocity of the target and vy(t) is the “y” velocity of the target. (We could
easily extend this to three dimensions by simply adding extra state elements
pz(t) and vz(t).) The state vector x(t) is assumed to have dynamics that can be
modeled in a “state-space” form. For example, a relationship that can be used
with some kinds of Kalman filter is:

ẋ(t) = f(x(t), u(t), w(t), t) (1)

y(t) = h(x(t), u(t), v(t), t), (2)

where w(t) is an unmeasurable “process noise” that is often modeled as a zero-
mean white Gaussian random process, v(t) is unmeasurable “sensor noise” that
is also modeled as a zero-mean white Gaussian random process, f(·) is the “state
equation” function that captures the dynamics of the state, and h(·) is the “mea-
surement equation” or “output equation” function that describes how the sensor
measurements relate to the state.

Creating an optimum estimate x̂(t) of the true state x(t) is a very challenging
problem in general. Very close approximations to the optimum estimate can
be made using particle filters, but these are too computationally intensive for
our application. Alternative suboptimal solutions can be derived by assuming
that the state estimation error always retains a Gaussian probability density
function—this assumption is the basis of the original Kalman filter, the extended
Kalman filter, and the sigma-point Kalman filters to be discussed. Then, rather
than having to propagate the entire density function through time, we need only
to evaluate the conditional mean and covariance of the state vector once each
sampling interval and make updates to the estimates using the following two
relationships:

x̂+(tx) = x̂−(tx) + L(tx, tm)
(

y(tm) − ŷ(tm)
)

(3)

Σ+
x̃(tx) = Σ−

x̃(tx) − L(tx, tm)Σ−

ỹ(tm)L(tx, tm)T , (4)

where the superscript T is the matrix/vector transpose operator, and

x̂+(tx) = E
[

x(tx) | Y
+
]

(5)

x̂−(tx) = E
[

x(tx) | Y
−

]

(6)

ŷ(tm) = E
[

y(tm) | Y
−

]

(7)

Σ−

x̃(tx) = E
[

(x(tx) − x̂−(tx))(x(tx) − x̂−(tx))T
]

= E
[

x̃−(tx)x̃−(tx)T
]

(8)

Σ+
x̃(tx) = E

[

(x(tx) − x̂+(tx))(x(tx) − x̂+(tx))T
]

= E
[

x̃+(tx)x̃+(tx)T
]

(9)

Σ−

ỹ(tm) = E
[

(y(tm) − ŷ(tm))(y(tm) − ŷ(tm))T
]

= E
[

ỹ(tm)ỹ(tm)T
]

= E
[

ỹ(tm)ỹ(tm)T
]

(10)



L(tx, tm) = E
[

(x(tx) − x̂−(tx))(y(tm) − ŷ(tm))T
]
(

Σ−

ỹ(tm)

)
−1

= Σ−

x̃(tx)ỹ(tm)

(

Σ−

ỹ(tm)

)
−1

. (11)

While this is a linear recursion, we have not directly assumed that the system
model is linear. In the notation we use, time tx indicates the timestamp of the
measurement closest in time to the present and tm indicates the timestamp
of the most recently received measurement. (In the literature, no distinction is
usually made between tx and tm. However, they will not be equal if measurements
arrive at the Kalman filter out-of-sequence, which is the topic of this chapter).
The decoration “circumflex” indicates an estimated quantity (e.g., x̂ indicates
an estimate of the true quantity x). A superscript “−” indicates an a priori
estimate (i.e., an estimate of a quantity’s value at some point in time based on all
sensor data except the most recently received measurement) and a superscript
“+” indicates an a posteriori estimate (i.e., an estimate of a quantity’s value
at some point in time based on all sensor data including the most recently
received measurement). The decoration “tilde” indicates the error of an estimated
quantity (e.g., x̃ is the difference between x and x̂). The symbol Σxy = E [xyT ]
indicates the auto- or cross-correlation of the variables in its subscript. (Note
that often these variables are zero-mean, so the correlations are identical to
covariances). Also, for brevity of notation, we often use Σx to indicate the same
quantity as Σxx. The symbol Y+ indicates the set of all sensor readings taken
up to and including the most recently received measurement, while Y− indicates
the set of all sensor readings excluding the most recently received measurement.

Equations (3) through (11) (and approximations thereof) may be used to
derive either the Kalman filter, the extended Kalman filter, or the sigma-point
Kalman filter. All members of this family of filters comply with a structured
sequence of six steps per iteration, as outlined here.

General step 1: State estimate time update. For each measurement received,
first assign tp = tx (the prior value of the filter time), then set tx = max(tx, tm)
(the updated value of the filter time). For in-order measurements this results in
tx = tm > tp; for out-of-order measurements, this results in tx = tp > tm. An
updated state prediction x̂−(tx) of the value of x(tx) is then made, based on
a priori information and the system model using (1) and (6).

General step 2: Error covariance time update. The second step is to determine
the predicted state-estimate error covariance matrix Σ−

x̃(tx) based on a priori

information and the system model using (8).

General step 3: Estimate system output y(tm). The third step is to estimate the
system’s output corresponding to the timestamp of the most recently received
measurement using present a priori information and (2) and (7).



General step 4: Estimator gain matrix L(tx, tm). The fourth step is to com-
pute the estimator gain matrix by evaluating (11). We again emphasize that
the literature generally makes no distinction between tx and tm. However, this
distinction is key to the O3SPKF developed herein, of which the most important
aspect is the ability to compute the correct value for L(tx, tm).

General step 5: State estimate measurement update. The fifth step is to com-
pute the a posteriori state estimate by updating the a priori estimate using the
estimator gain and the output prediction error using (3).

General step 6: Error covariance measurement update. The final step computes
the a posteriori error covariance matrix using (4). The estimator output com-
prises x̂+(tx) and Σ+

x̃(tx). The estimator then waits until the next measurement
is received, and returns to Step 1.

The standard Kalman filter is obtained by replacing (1) and (2) with linear
state-space equations using a fixed sampling interval, resulting in closed-form
equations for Steps 1–6. When the system equations are nonlinear, however,
we must make some approximations to evaluate the expectation operators, and
might consider the extended Kalman filter. A better alternative is the sigma-
point Kalman filter, which has the same computational complexity as the ex-
tended Kalman filter, but more accurately approximates these steps.

SPKF computes estimates of the mean and covariance of the output of a non-
linear function using a small fixed number of function evaluations. A set of points
(sigma points) is chosen as input to the function so that the (possibly weighted)
mean and covariance of the points exactly matches the a priori mean and covari-
ance of the input random variable being modeled. These points are then passed
through the nonlinear function, resulting in a transformed set of output points.
The a posteriori mean and covariance that are sought are then approximated by
the mean and covariance of these points. Note that the sigma points comprise
a fixed small number of vectors that are calculated deterministically—unlike
particle filter methods.

Specifically, if the input random vector x has mean x̄ and covariance Σx̃,
then p + 1 = 2 × dim(x) + 1 sigma points are generated as the set

X =
{

x̄, x̄ + γ
√

Σx̃, x̄ − γ
√

Σx̃

}

,

with members of X indexed from 0 to p, where γ is a tuning parameter (see below
for an example), and where the matrix square root R =

√
Σ computes a result

such that Σ = RRT . Typically, the efficient Cholesky decomposition [13,14] is
used, resulting in a lower-triangular R. The reader can verify that the weighted
mean and covariance of X equal the original mean and covariance of random
vector x for a specific set of {γ, α(m), α(c)} if we define the weighted mean as

x̄ =
∑p

i=0 α(m)
i Xi, the weighted covariance as Σx̃ =

∑p
i=0 α(c)

i (Xi − x̄)(Xi − x̄)T ,

Xi as the ith column of X , and both α(m)
i and α(c)

i as real scalars with the

necessary (but not sufficient) conditions that
∑p

i=0 α(m)
i = 1 and

∑p
i=0 α(c)

i =



1. The various sigma-point methods differ only in the choices taken for these
weighting constants. The two most common methods are the unscented Kalman
filter (UKF) [5,6,7,15] and the central difference Kalman filter (CDKF) [9,10].
The CDKF has only one “tuning parameter” h, which makes implementation
simpler. It also has marginally higher theoretic accuracy than the UKF [10], so
we focus on this method in the application sections later. Using the CDKF,

γ = h, (h =
√

3 for Gaussian distributions)

α(m)
0 = α(c)

0 =
h2 − dim(x)

h2

α(m)
i = α(c)

i =
1

2h2
, i != 0

To use SPKF in a general estimation problem, with nonlinear state and
output equations, we first define an augmented random vector xa that combines
the randomness of the state, process noise, and sensor noise. This augmented
vector is then used as the state in the estimation process. However, we will
assume a linear state equation with zero-mean process noise and additive zero-
mean sensor noise to the otherwise nonlinear output equation. This allows the
SPKF steps to be somewhat simplified. The model we use is:

x(t) = A(t0)x(t − t0) + wt0(t), t0 > 0

y(t) = h(x(t), u(t)) + v(t),

where A(t0) is a state-transition matrix that represents the homogeneous dynam-
ics of the state over a generic time interval t0. For a given t0, A(t0) is a constant
matrix; however, in this work we receive measurements at random times, so we
must treat t0 and therefore A(t0) as variable in the development of the algorithm.

In this section, we will assume that measurements arrive in-sequence, such
that when the measurement arrives at the sensor-fusion process tm ≥ tx. We
will call this case the “In-order SPKF.”

In-order SPKF step 1: State estimate time update. First, assign tp = tx (the
prior value of the filter time), then set tx = max(tx, tm) = tm. We desire to
estimate x̂−(tx) using prior information regarding x(tp) and the state equation.
To do so, we compute sigma points X+(tp) corresponding to the prior state and
covariance estimates. These p + 1 vectors are

X+(tp) =
{

x̂+(tp), x̂
+(tp) + γ

√

Σ+
x̃(tp), x̂

+(tp) − γ
√

Σ+
x̃(tp)

}

.

Sigma points corresponding to a prediction of the state at time tx are generated
by evaluating the process equation f(·) using all X+

i (tp) (where the subscript i
denotes that the ith vector is being extracted from the original set), yielding the
a priori sigma points X−

i (tx). The state prediction is a weighted average of the
X−

i (tx). In general,



x̂−(tx) = E
[

f(x(tp), u(tx), w(tx)) | Y
−

]

≈
p

∑

i=0

α(m)
i X−

i (tx).

However, this simplifies for our linear state equation. If t0 = tm − tp,

x̂−(tx) = E
[

At0x(tp) + wt0(tx) | Y
−

]

=
p

∑

i=0

α(m)
i X−

i (tx) =
p

∑

i=0

α(m)
i A(t0)X+

i (tp)

= A(t0)x̂
+(tp).

In-order SPKF step 2: Error covariance time update. Using the a priori sigma
points from Step 1, the a priori covariance estimate is computed as

Σ−

x̃(tx) =
p

∑

i=0

α(c)
i

(

X−

i (tx) − x̂−(tx)
)(

X−

i (tx) − x̂−(tx)
)T

+ Σwt0
.

For our linear state equation, this again simplifies:

Σ−

x̃(tx) = A(t0)Σ
+
x̃(tp)A(t0)

T + Σwt0
.

In-order SPKF step 3: Predict system output y(tm) = y(tx). The system out-
put is predicted by evaluating the model output equation using the sigma points
describing the state at time tm. The in-order case has tm = tx, so we first com-
pute the points Y−

i (tm) = h(X−

i (tm), u(tm)) = h(X−

i (tx), u(tm)). The output
estimate is then

ŷ(tm) = E
[

h(x(tx), u(tm)) + v(tm) | Y
−

]

≈
p

∑

i=0

α(m)
i h(X−

i (tx), u(tm))

=
p

∑

i=0

α(m)
i Y−

i (tm).

In-order SPKF step 4: Estimator gain matrix L(tx, tm). To compute the esti-
mator gain matrix, we must first compute the required covariance matrices.

Σ−

ỹ(tm) =
p

∑

i=0

α(c)
i

(

Y−

i (tm) − ŷ(tm)
)(

Y−

i (tm) − ŷ(tm)
)

+ Σv

Σ−

x̃(tx)ỹ(tm) =
p

∑

i=0

α(c)
i

(

X−

i (tx) − x̂−(tx)
)(

Y−

i (tm) − ŷ(tm)
)

.

Then, we simply compute L(tx, tm) = Σ−

x̃(tx)ỹ(tm)

(

Σ−

ỹ(tm)

)
−1

.



In-order SPKF step 5: State estimate measurement update. The a posteriori
state estimate is computed using (3).

In-order SPKF step 6: Error covariance measurement update. The state esti-
mate error covariance matrix is updated directly from the optimal formulation:
Σ+

x̃(tx) = Σ−

x̃(tx) − L(tx, tm)Σ−

ỹ(tm)L(tx, tm)T .

For reference, the in-order SPKF optimized for a linear state equation and
additive sensor noise is summarized in Table 1.

4 Out-of-Order Sigma-Point Kalman Filters (O3SPKF)

This chapter introduces a novel variant of the SPKF that allows the filter to
be updated using out-of-sequence sensor data. That is, the filter state estimate
may already be updated to time tx using data sensed at tx when a new piece of
information arrives that is the result of a sensor reading taken at time tm < tx.
The most common reasons for such out-of-sequence data include: inter- and intra-
UAV communication latency, and processing latency. Ideally, this old sensor data
should not be discarded, since it still contains information related to the target’s
present state, but its impact should be discounted appropriately, based on how
stale the measurement is.

A similar problem was treated in [11], where a SPKF needed to be updated
based on time-lagged sensor data from a global positioning system (GPS) unit.
In their work, however, the time lag was constant and known a priori. In our
case, the time lag is not constant, neither is it known a priori. However, we do
assume that sensor data has a time-stamp on it so that we can calculate the time
lag. Nevertheless, reference [11] gives us a clue as to how to modify the SPKF
to our purposes.

In this section, we will assume that measurements arrive out-of-sequence;
that is, tm < tx.

Out-of-order SPKF steps 1 and 2: State estimate time update: First, assign
tp = tx (the prior value of the filter time), then set tx = max(tx, tm) = tx.
We desire to estimate x̂−(tx) using prior information regarding x(tp) and the
state equation. However, since tx has not been changed by this measurement,
we simply retain the prior values of x̂−(tx) = x̂+(tx) and Σ−

x̃(tx) = Σ+
x̃(tx).

Out-of-order SPKF step 3: Estimate system output y(tm) != y(tx): When using
out-of-sequence measured data to update the SPKF, the state update equation
maintains the same linear form x̂+(tx) = x̂−(tx)+L(tx, tm)(y(tm)− ŷ(tm)). The
key insight from [11] is that in such a case, L(tx, tm) should be calculated via
Eq. (11) instead of using the standard SPKF formulation where tx = tm. In
order to compute this update, we require an estimate ŷ(tm) and the covariances
required to compute L(tx, tm). These in turn require sigma points representing
x̂−(tx) and ŷ(tm). The first are easily computed:

X−(tx) =
{

x̂−(tx), x̂−(tx) + γ
√

Σ−

x̃(tx), x̂
−(tx) − γ

√

Σ−

x̃(tx)

}

.



Table 1. Summary of variable sample period in-order SPKF using linear state equation
and additive noises.

Nonlinear state-space model:

x(t)= A(t0)x(t − t0) + wt0(t)
y(t)= h(x(t), u(t)) + v(t),

where wt0(t) and v(t) are independent, zero-mean Gaussian noise processes of
covariance matrices Σwt0

and Σv, respectively.

Definition: Let p = 2 × dim(x(t)).
Initialization: At time zero, set tx = 0 and

x̂+(0) = E
ˆ

x(0)
˜

Σ+
x̃(0) = E

ˆ

(x(0) − x̂+(0))(x(0) − x̂+(0))T
˜

Computation: For each sample occurring in-order, (i.e., tm ≥ tx) compute:

Initialize time pointers: tp = tx , tx = tm, and t0 = tx − tp.
State est. time update: x̂−(tx) = A(t0)x̂

+(tp).
Error cov. time update: Σ−

x̃(tx) = A(t0)Σ
+
x̃(tp)A(t0)

T + Σwt0
.

Output estimate: X−(tx) =
n

x̂−(tx), x̂−(tx) + γ
q

Σ−

x̃(tx),

x̂−(tx) − γ
q

Σ−

x̃(tx)

o

.

Yi(tm) = h(X−

i (tx), u(tm)).

ŷ(tm) =
Pp

i=0 α
(m)
i Yi(tm).

Estimator gain matrix: Σ−

ỹ(tm) =
p

X

i=0

α
(c)
i

`

Yi(tm) − ŷ(tm)
´`

Yi(tm) − ŷ(tm)
´T

+Σv.

Σ−

x̃(tx)ỹ(tm) =
p

X

i=0

α
(c)
i

`

X
−

i (tx) − x̂−(tx)
´`

Yi(tm) − ŷ(tm)
´T

.

L(tx, tm) = Σ−

x̃(tx)ỹ(tm)

“

Σ−

ỹ(tm)

”

−1
.

State est. meas. update: x̂+(tx) = x̂−(tx) + L(tx, tm)
`

y(tm) − ŷ(tm)
´

.

Error cov. meas. update: Σ+
x̃(tx) = Σ−

x̃(tx) − L(tx, tm)Σ−

ỹ(tm)L
T (tx, tm).



It remains to calculate the sigma points to represent the distribution of ŷ(tm)—
we can do so using the output equation h(·) to find these output sigma points if
we are able to calculate the sigma points representing x̂−(tm). To do so, consider
the following specific form of a state equation where we define the time interval
t0 = tx − tm3

x(tx) = A(t0)x(tm) + wt0(tx)

x(tm) = A(t0)
−1x(tx) − A(t0)

−1wt0(tx)

x̂−(tm) = E [x(tm)|Y−] = A(t0)
−1x̂−(tx),

where Y− is the history of all measurements, excluding the “new” measurement
taken at time tm. Therefore, we can “predict” a prior state estimate given the
present state estimate. The prior covariance can also be computed, and is found
to be

Σ−

x̃(tm) = A(t0)
−1

(

Σ−

x̃(tx) + Σwt0

)

A(t0)
−T .

Using these two quantities, we can compute the desired sigma points representing
x̂−(tm) as

X−(tm) =
{

x̂−(tm), x̂−(tm) + γ
√

Σ−

x̃(tm), x̂
−(tm) − γ

√

Σ−

x̃(tm)

}

.

These sigma points are passed through the output equation h(·) to first form
Y−

i (tm) = h(X−

i (tm), u(tm)) and then ŷ−(tm) as before.

Out-of-order SPKF steps 4–6: The remaining steps are straightforward now
that we have a means for calculating the sigma points corresponding to y(tm).
The entire O3SPKF for a linear state equation and additive sensor noise is
summarized in Table 2.

5 An Example Model of Motion

In order to use any Kalman filtering technique to localize a target, we re-
quire a model of the target’s dynamics. Due to the non-cooperative nature of
the target we wish to localize in our present research, this model cannot be
known a priori; therefore, we must employ an approximate model. Here, we
use a “nearly constant velocity” (NCV) model of dynamics. For a state vector
x(t) = [px(t), py(t), vx(t), vy(t)]T , where px(t) is the “x” position coordinate of
the target, py(t) is the “y” position coordinate of the target, vx(t) is the “x”

3 Note that the particular form of a linear state equation given above is not necessary
for this general idea to work; however, if the equation is nonlinear, it must be locally
Lipschitz. Sigma points representing x(tx) and wt0(tx) must be propagated backward
in time to compute the mean and covariance estimates of x(tm).



Table 2. Summary of variable sample period out-of-order SPKF using linear state
equation and additive noises.

Nonlinear state-space model:

x(t)= A(t0)x(t − t0) + wt0(t)
y(t)= h(x(t), u(t)) + v(t),

where wt0(t) and v(t) are independent, zero-mean Gaussian noise processes of
covariance matrices Σwt0

and Σv, respectively.

Definition: Let p = 2 × dim(x(t)).
Initialization: At time zero, set tx = 0 and

x̂+(0) = E
ˆ

x(0)
˜

Σ+
x̃(0) = E

ˆ

(x(0) − x̂+(0))(x(0) − x̂+(0))T
˜

Computation: For each sample occurring out-of-order, (i.e., tm < tx) compute:

Initialize time pointers: t0 = tx − tm.
Output estimate: x̂−(tm) = A(t0)

−1x̂+(tx).

Σ−

x̃(tm) = A(t0)−1
“

Σ+
x̃(tx) + Σwt0

”

A(t0)−T .

X−(tm) =
n

x̂−(tm), x̂−(tm) + γ
q

Σ−

x̃(tm),

x̂−(tm) − γ
q

Σ−

x̃(tm)

o

.

Yi(tm) = h(X−

i (tm), u(tm)).

ŷ(tm) =
Pp

i=0 α
(m)
i Yi(tm).

Estimator gain matrix: X+(tx) =
n

x̂+(tx), x̂+(tx) + γ
q

Σ+
x̃(tx),

x̂+(tx) − γ
q

Σ+
x̃(tx)

o

.

Σ−

ỹ(tm) =
p

X

i=0

α
(c)
i

`

Yi(tm) − ŷ(tm)
´`

Yi(tm) − ŷ(tm)
´T

+Σv.

Σ−

x̃(tx)ỹ(tm) =
p

X

i=0

α
(c)
i

`

X
+
i (tx) − x̂+(tx)

´`

Yi(tm) − ŷ(tm)
´T

.

L(tx, tm) = Σ−

x̃(tx)ỹ(tm)

“

Σ−

ỹ(tm)

”

−1
.

State est. meas. update: x̂+(tx) = x̂−(tx) + L(tx, tm)
`

y(tm) − ŷ(tm)
´

.

Error cov. meas. update: Σ+
x̃(tx) = Σ−

x̃(tx) − L(tx, tm)Σ−

ỹ(tm)L
T (tx, tm).



velocity of the target and vy(t) is the “y” velocity of the target, we have:

ẋ(t) =







0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0







︸ ︷︷ ︸

A

x(t) + w(t)

y(t) = h(x(t), u(t)) + v(t),

where the stochastic signals w(t) and v(t) are assumed to be Gaussian and
white, and sensor noise v(t) has covariance matrix Σv and process noise w(t)
has covariance matrix Σw(t) = diag(0, 0, σ2, σ2). The output equation depends
on h(·), which itself depends on the sensor being used to produce a measurement
and perhaps a measurable input signal u(t). This model says, in effect, that the
target velocity is generally constant except via perturbations to its acceleration
through w(t), and that measurements may be taken that somehow relate to the
position and velocity of the target.

We will be updating the Kalman filter at non-deterministically separated
discrete points in time. Therefore, we need to be able to integrate the effect
of w(t) on x(t) over a variable period t0 (the integral essentially performing
a convolution) and result in a variable-sample-rate discrete-time model of the
form:

x(t + t0) = A(t0)x(t) + wt0(t)

y(t) = h(x(t), u(t)) + v(t).

(We see that the output equation is unchanged). We compute A(t0) = eAt0 ,
where e(·) is the matrix-exponential function. We further compute [16]

Σwt0
=

∫ t0

0
eA(t0−τ)ΣweAT (t0−τ) dτ

to evaluate the equivalent discrete-time noise covariance based on the continuous-
time noise covariance. For the NCV model, the state equation becomes

x(t + t0) =







1 0 t0 0
0 1 0 t0
0 0 1 0
0 0 0 1







︸ ︷︷ ︸

A(t0)

x(t) + wt0(t)

where Σwt0
can be evaluated analytically, and is found to be

Σwt0
=









t3
0
σ2

3 0 t2
0
σ2

2 0

0 t3
0
σ2

3 0 t2
0
σ2

2
t2
0
σ2

2 0 t0σ2 0

0 t2
0
σ2

2 0 t0σ2









.



This model is suitable for use with either the in-order SPKF or the out-of-order
SPKF as developed in this chapter.

6 Performance Comparisons

Results indicative of the performance of the simple, buffered, and O3SPKF ap-
proaches were generated via simulation of multiple UAVs locating a mobile tar-
get. Target and UAV trajectories were generated using the United States Air
Force Academy (USAFA) multiple-UAV simulator, to be described next. The
overall methodology for generating results will then be discussed.

6.1 The USAFA Multiple UAV Simulation System Control

Architecture

In this section, we briefly present the distributed control architecture we de-
veloped to search, detect, and locate ground targets using multiple UAVs. The
purpose is to provide readers the proper context in which the out-of-order Sigma
Point Kalman Filter technique allows us to achieve our overall goal. As mentioned
earlier, the overall goal is to develop a cooperative multiple heterogeneous UAVs
system for military applications. In particular, we are interested in developing
a distributed control architecture for each UAV that can optimize transmitted
sensor information obtained by nearby UAVs. Collectively, the multiple UAVs
cooperate to search, detect, and locate ground targets. To that end, we have
developed the following control architecture.

The control architecture is made of a behavior-based state machine with four
different states shown in Fig. 1: Global Search (GS), Approach Target (AT),
Locate Target (LT), and Target Re-acquisition (TR). Each UAV operates in one
of the four states at a time. The switch between two operating states is based
on the current state of a UAV, sensor values obtained from the UAV and other
neighboring UAVs, and state data transmitted from other UAVs in the mission
area. For details of the switching conditions, see Table 3.

Table 3. List of events that trigger decisions to change states in the decision state
machine of each UAV.

# From To Event
1 GS AT New target (e.g., RF emitter) detected by UAV’s sensor.
2 GS AT Decision to cooperate with an ongoing localization effort.
3 AT LT UAV arrives at orbit range from target’s estimated position.
4 AT GS Target becomes occluded (e.g., emitter stops transmitting).
5 AT GS Decision to abandon an ongoing localization effort.
6 LT GS Target successfully located.
7 LT TR Target becomes occluded (e.g., emitter stops transmitting).
8 TR AT Target detected by UAV’s sensor.
9 TR GS Maximum time for TR reached.



Fig. 1. Decision state machine for UAV state selection. The numbered events that
trigger each particular directional connector are listed in Table 3.

Each UAV starts in the GS state when launched. During this state, a UAV
uses a set of heuristic rules to guide its movement. The rules include visiting
locations with little or no recent history, moving away from other nearby UAVs
to maximize the search coverage, and moving straight, if possible, to reduce
fuel use. Once a target is detected, the UAV that detected the target switches
to the AT state and approaches the target, while other UAVs that receive the
target detection information will independently decide whether to approach the
detected target or continue to operate in the current operating state based on
the estimated distance of the target, the number of UAVs that are approaching
the target, and the estimated number of targets in the mission area that have
not been detected. Once a UAV is within a region from which it can safely locate
the target, it switches the operating state from AT to LT and flies around the
target with a pre-determined orbit. Other UAVs that committed to help locate
the target also switch to the LT state as they enter the orbit. As the UAVs
fly around the target, they position themselves to maximize collective sensing
capabilities while combining sensor data among the UAVs on the orbit. It is this
state of our operation where the current work on O3SPKF is used to combine
multiple sensor information obtained by the UAVs. A target may disappear from
the sensors before it is localized within a desired accuracy. For example, for a
radio frequency signal emitting target, it may stop emitting before it can be
located. For such situations, UAVs who are operating in the LT state switch to
the TR state. During this state, a UAV engages in a search pattern similar to
a global search except in a smaller scale to continue to look for the lost target.
The UAV will continue in this state either until the target reappears at which
time it switches back to the LT state or when a pre-determined time interval
has elapsed at which time it switches to the GS state.

Figure 2 shows a screenshot of the simulator in action. The emitter location
is indicated by a white cross in the center of the large circle—the emitter leaves



behind it a fading trail of crosses showing its path. The large circle indicates the
desired orbiting radius of the UAVs—this is not possible in practice due to the
random motion of the targets, but is approximated by the UAV control algo-
rithm. The small squares denote the UAV positions (two in this case). Lines are
drawn between the UAVs and their target-position estimates, with the SPKF
state three-sigma uncertainty denoted by the ellipse centered on the target po-
sition estimate.

Fig. 2. Screenshot of simulation system in action.

6.2 The Simulation Process

The following methodology was employed

– First, the USAFA Multiple UAV Simulation System was used to generate
the trajectories of a mobile target and the UAVs tracking it. UAV locations
were initialized by randomly placing them within a 2 km radius of the tar-
get. The UAV flight paths were then controlled to converge to an orbit of
0.5 km distance from the target, with inter-UAV angles of 90◦ for a two-UAV
simulation and ±120◦ for a three-UAV simulation. Locations of the target
and UAVs were recorded once per second (of simulated time). Targets moved
according to the NCV model with σ = 2 × 10−4, with maximum velocity
limited to 20 km/h. Nominal UAV velocity was 100 km/h.

– Secondly, randomness was applied to the simulated data. Measurement re-
quests were made to each sensor at a nominal sample rate of 1 Hz, corre-



sponding to the original data. Random clock timing jitter uniformly dis-
tributed between −5 ms and 5 ms was applied to each measurement time
(locations of target and UAV were interpolated at these instants from the
original data). Two sensors per UAV were simulated:

• One sensor providing target emission DOA information, with measure-
ment timestamp of 0.05 s after the measurement was requested, and a
sensor-data processing time uniformly distributed between [0.06 s, 0.061 s]
(the randomness accounts for timing uncertainty in a multi-threaded
processing system), and Gaussian sensor noise with zero mean and stan-
dard deviation of 6 deg. These characteristics correspond roughly to a
radio-frequency (RF) DOA sensor that we are currently building for a
prototype UAV.

• A second sensor also providing DOA information, with measurement
timestamp of 0.01 s after the measurement was requested, and a sensor-
data processing time uniformly distributed between [0.2 s, 0.22 s], and
Gaussian sensor noise with zero mean and standard deviation of 3 deg.
These characteristics correspond roughly to a camera-based DOA sensor
that we are building for a prototype UAV. The measurement process
is much faster than for the RF sensor, but requires a longer processing
time.

We note that the “simple approach” will never make use of the data from the
second sensor. We therefore expect that results using this approach will be
quite poor, and that even a buffer of one sample could improve performance
significantly.
Random latency was also added to those data traveling from one UAV to
another. This was computed using an exponential random variable with dif-
fering means, as reported in the results sections below.

– The output sensor data and UAV position data from the second step were
then used as input to the ideal method, the simple method, the buffered
method with differing buffer lengths, and the O3SPKF (the “ideal method”
is a post-processing method that sorts all data in order by tm, then applies
an SPKF to it. This provides a performance bound that is not achievable in
practice since the sorting process is non-causal). Target state estimates and
uncertainties were output whenever they were updated.

– True position data from the first step and estimated position data from the
third step were compared.

6.3 Results

Simulations using the above methodology were run for scenarios comprising two
UAVs localizing a target and three UAVs localizing a target. In each case 500
simulations were run, with the data being processed by each of the methods,
and the results averaged in a root-mean-square (RMS) sense. Figure 3 shows a
representative plot of the average localization error versus time for an expected
latency of 5 s. The ideal (non-achievable) case is best, as expected, followed by



O3SPKF, the buffered method with three different buffer lengths, and then the
simple method. Note that the the “Bufferk” method denotes a buffer length
N = $kµ/Ts% × number of UAVs × number of sensors per UAV. The poor re-
sults of the simple method are not difficult to explain since the majority of the
sensor readings are discarded. Perhaps surprisingly, the buffered method with
the smallest buffer performed best—it appears that discarding data is not as
costly as a stale state estimate (due to a larger prediction time) when the target
is moving.

Various latencies were simulated, and summary results are presented in Fig. 4.
Communication latencies of 0.2 s (the value we expect in our prototype UAV
system), and 1 s through 5 s were simulated (again, the RMS average of the final
localization error of 500 simulations per data point are plotted). We see that
all methods degrade quite gently with increasing latency, and that the O3SPKF
performs best of all.

7 Conclusions

In this chapter we address the problem of sensor fusion to localize a target when
some of the measurements arrive at the sensor-fusion process out-of-order. We
propose that sigma-point Kalman filtering is a good approach to sensor fusion,
but is not able to handle the out-of-order measurements directly. Several simple
remedies are presented, which include discarding out-of-order measurements, or
alternately buffering a number of measurements before presenting them to the
sensor-fusion process so that the majority of them may be retained and sorted
in order. The problem with simply discarding out-of-order measurements is that
they do contain useful data regarding the target position, and it is not wise to
throw away this information. The problem with buffering measurements is that
the fusion process has added delay built into it, so that its state estimate is
stale—this estimate must then be propagated forward in time to the present
in order to make control decisions, and the propagation step adds error that
increases with the amount of time required for the propagation.

We present an alternate approach to either of these ad-hoc methods. We re-
derive the sigma-point Kalman filter such that the modified filter, which we call
the out-of-order sigma-point Kalman filter (O3SPKF), is able to directly incor-
porate the out-of-order measurements without buffering and without discarding
measurements. If a measurement arrives at the sensor-fusion process in-order,
the standard SPKF steps are executed. If a measurement arrives at the sensor-
fusion process out-of-order, the modified O3SPKF steps are executed. Since no
measurements are discarded by the O3SPKF, it must execute its steps more fre-
quently than the methods that do discard sensor data. (For example, the buffered
methods for k ∈ {1, 2, 3} retain on average 68%, 86%, and 95% of the measure-
ments received (respectively), so the number of iterations of the SPKF required
by the buffered methods are similarly that fraction of the number of iterations
required by the O3SPKF.) However, per iteration, the computational complex-
ity of O3SPKF is the same as SPKF, it does not require memory overhead for
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Fig. 3. Example of localization error improvement over time. “Ideal” = no-latency
SPKF result.
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Fig. 4. Simulation summary performance plots. “Ideal” = no-latency SPKF result.



buffering, and it gave the best simulation results of all the methods attempted.
In conclusion, the O3SPKF works very well, and is an excellent candidate for
sensor fusion for the application of locating targets using multiple UAVs.
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