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ABSTRACT 

A critical element of a hybrid-electric-vehicle (HEV) 
propulsion system is the battery management system 
(BMS), which controls the performance of the HEV 
battery, the costliest and heaviest component of the 
propulsion system.   This paper examines the relevance 
and criticality of an HEV BMS as a whole; that is, its 
general functions and “responsibilities”.  Of these, its 
ability to accurately estimate and report the state-of-
charge (SOC) is arguably the most important.  This 
paper will explain why SOC estimation is important, and 
will examine advances in the state of the art of SOC 
estimation methods, with a focus on Kalman Filter 
techniques.  
 

HEV BATTERY PACK OVERVIEW  

Optimizing the cost, weight, size and reliability of major 
HEV systems is critical in maximizing the value of the 
HEV to the end customer.  Of the components 
comprising the propulsion system of an HEV, the 
costliest is the battery pack, which may represent 30–
35% of the total cost of the propulsion system. The 
battery is among the heaviest components of the 
propulsion system as well. Therefore, careful design of 
the battery pack and the BMS can dramatically impact 
the lifetime affordability of an HEV. 

Figure 1 provides a block diagram of a typical battery 
pack.  Comprising the pack are the battery cells, junction 
block(s), BMS, thermal management system, wiring and 
connectors, and the pack housing.  (While it is possible 
for the BMS to be physically located outside of, or even 
remote from, the pack housing itself, for this paper it is 
assumed to be located within the boundaries of the 
pack.)  In most applications, the cells are wired in series 
to develop the necessary high voltage. 

The primary functions of the battery pack are to store 
electrical energy produced by the vehicle (during 
regenerative braking) and to provide electrical energy for 
use by the vehicle particularly during acceleration or 
other peak energy demands.   The pack needs to do so 
in a manner that is safe, reliable, and cost efficient.  This 

includes not only minimizing initial purchase costs, 
protecting the vehicle from voltage surges or drop-outs, 
and preventing harmful conditions, but also minimizing 
operational stresses that can shorten the life of the 
battery cells.   These operational stresses include 
excessive temperature, excessive discharging, and 
excessive over-charging.    

 

The pack housing provides the physical housing of the 
pack’s components.  The cooling system provides the 
physical capability for the air (or liquid) thermal media 
circulation. The junction module provides the high-
voltage connection to the vehicle, as well as the 
necessary relays and safety interlocks for the pack.  

Remaining is the BMS, which manages the delivery and 
acceptance of electrical energy to/from the cells, as well 
as the operation of the cooling system and junction 
module.  The BMS consists of a printed circuit board 
(PCB) and connectors (and housing, if necessary).  It 
provides the following functions (among others): 
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Figure 1 
HEV Battery Pack Block Diagram 



- Cell state monitoring (e.g., voltage, temperature) 
- Charge and discharge current measurement and 

limiting 
- Management of the cooling system  
- Necessary data conditioning, diagnostics and 

battery-to-host vehicle communication functions 
- High voltage relay energizing and de-energizing. 
- SOC and state-of-health (SOH) estimating, including 

the effects of aging 
 

BATTERY MANAGEMENT AND SOC 

Of the functions listed above, accurate SOC and SOH 
estimation are the most critical functions in optimizing the 
size and weight of a battery pack, as well as protecting 
the cells and providing a reliable, “transparent” driving 
experience.   
- Accurate SOC estimation allows for optimal and 

smooth blending of battery power with the internal 
combustion (IC) engine; 

- Maximum charge and discharge power limits based 
on SOC, temperature and SOH are needed to 
maximize battery life; and, 

- Battery service indicators and diagnostic tools rely on 
accurate state information. 

 
The BMS must have knowledge of the internal state and 
parameters of its cells in order to perform many of its 
functions.  However, in most cases, the internal cell 
states and parameters cannot be directly measured, but 
must be estimated in some way.   
 
This paper focuses on refinements to an approach for 
continually and dynamically estimating the state-of-
charge of battery cells during HEV operation.  Much 
attention is paid to SOC estimation accuracy because of 
the potential for optimizing battery usage—and therefore 
size, weight, cost and reliability—if the reported SOC can 
be trusted over the operating range and life of the HEV.   

The most significant benefit of an accurate SOC 
estimate is the ability to minimize the number and size of 
cells needed to provide the range of power and energy 
required by the propulsion system.  HEVs typically 
operate in an SOC range of 20% to 80%.  If the SOC 
estimate uncertainty is high, several undesirable 
conditions could arise with the potential for over-
discharging and overcharging. 

If the SOC estimate is too optimistic (i.e., it reports an 
available charge greater than reality), the propulsion 
system may demand power in excess of the ability of the 
battery to provide it while remaining above the minimum 
SOC.  Several effects could then result: 
- The pack will discharge deeper than expected, and 

therefore take longer to recharge to a median level.  
Also, if the vehicle is turned off in this state, the 
battery may not have the power re-start the engine 
when required; 

- The BMS may detect an over-current condition and 
abruptly reduce available power to the propulsion 

system, resulting in a perception of poor drivability 
dynamics; and, 

- In the worst case, battery cell damage may occur if 
no secondary over-discharge protection is available 
in the BMS. 

These conditions will adversely affect customer 
perception of vehicle performance and reliability.  One 
solution, in the absence of a better SOC estimate, is to 
add cells to provide the necessary “headroom” to 
compensate. 

If the SOC estimate is too pessimistic (i.e., it reports an 
available charge lower than reality), several adverse 
conditions may arise.  During acceleration events, the 
propulsion system may unnecessarily limit the demand 
for battery power in favor of the internal combustion (IC) 
engine, resulting in lower fuel efficiency.  Or, during 
deceleration/regen events, the BMS may “allow” 
recharge energy in excess of the ability of the battery to 
accept it while remaining below the maximum SOC.  
Battery cell damage may result in extreme cases.  Again, 
customer perception will suffer, particularly if fuel 
economy or performance expectations are not met, or 
battery cells need premature replacement.  

The above conditions pose considerable risks in terms of 
battery cost and reliability.  To the extent the SOC 
estimate operates in a wide range of uncertainty (error), 
propulsion system designs will require excess battery 
cost and weight to ensure satisfactory battery and 
vehicle performance.  

The potential for over-discharging and over-charging 
actually applies to both electric vehicles (EVs) and HEVs.  
However, HEVs place an additional burden on the SOC 
estimation algorithm in that, unlike EVs, many HEVs 
typically do not have a “plug-in” recharging feature.  
When connected to an external charger, a reasonably 
well-designed BMS can “reset” the SOC estimate to a 
high degree of accuracy.  During the subsequent driving 
period, the SOC estimate may drift, but such drift error 
would be limited to a few hundred miles of driving until 
the user again plugs in the vehicle.  Moreover, an 
“intelligent” BMS could use each subsequent manual 
recharge event to further refine the SOC algorithm and 
further reduce drift error.  In a “plug-free” HEV, the SOC 
estimator must maintain its expected accuracy for tens of 
thousand of miles, and provide for operation (and 
memory) not only during normal operation, but also 
during vehicle shutdown and start-up (key-on, key-off), 
and fault conditions.  

BATTERY PACK DYNAMICS 

As mentioned above, the BMS for HEV applications is 

required to estimate quantities that are descriptive of the 

present battery pack condition, but that may not be 

directly measured.  Some of these quantities may 

change rapidly, such as the pack state-of-charge (SOC), 

which can traverse its entire range within minutes.  

Others may change very slowly, such as cell capacity, 

which might change as little as 20% in a decade or more 



of regular use.  The quantities that tend to change 

quickly comprise the “state” of the system, and the 

quantities that tend to change slowly comprise the time 

varying “parameters” of the system. 

Hybrid-electric vehicles are designed so that (ideally) the 

internal combustion engine provides average vehicle 

power, and the electric system provides the dynamic 

variation in the power demanded, resulting in overall high 

efficiency.  One implication of the highly dynamic power 

demand on the battery system is that the cells are rarely 

in an electro-chemical equilibrium state.  This disqualifies 

simple methods to estimate the battery internal state.   

OVERVIEW OF CELL STATE ESTIMATION 
METHODS 

Since accurate state estimates are required to establish 

battery power limits, and for driver interface and vehicle 

control, the associated algorithms must take into account 

such effects as hysteresis, polarization, time constants, 

etc.  Additionally, these algorithms must be able to track 

changes in parameters as the cells age in order to 

maintain accuracy. 

There are some estimation methods that, for a variety of 

application-specific reasons, are better (or worse) than 

others for use in SOC algorithms.  

The Tino method, for example, is a voltage-based 

algorithm to estimate SOC that uses the approximation  

voltage ≈ OCV(SOC) − I×R

SOC ≈ OCV−1
(voltage + I×R)

 

where OCV =open circuit voltage 
 
This does not take into account hysteresis, polarization 
voltages, etc., and so is a very crude estimate of SOC, 
especially at low temperatures where resistance can be 
quite high and where hysteresis can also be quite large.  
It is also poor at extreme values of SOC where the 
resistance is much larger than at moderate SOC values.  
 
Coulomb-counting methods may be suitable for short 

periods of battery operation. These methods are 

initialized using an SOC value derived from the first 

voltage readings, just like the Tino method.   However, 

coulomb-counting is subject to significant drift (error) 

and, in the case of HEV use, the counting “registers” 

rarely have the opportunity to be re-initialized.  

This paper presents an approach that uses a 

mathematical model of cell dynamics to estimate HEV 

battery state and parameters.  This model-based 

approach is a nonlinear variant of Kalman filtering, first 

published in 1961 [1,2], which itself is known to be the 

optimum estimator for a linear system.  Kalman filters 

are ubiquitous in control systems, communications, 

defense, image processing, space, and GPS navigation 

applications, they present a single unified approach to 

BMS estimation tasks without requiring add-on reset 

mechanisms or correction factors for age, temperature, 

and so forth, are computationally simple—only requiring 

linear algebraic operations—and provide the best 

solution for robust long-term deployment.  

Even within the domain of Kalman filtering we have 

found specific methods to perform better than others—

sometimes significantly so.  The Extended Kalman Filter 

(EKF), for example, is perhaps the most common 

approach to state estimation for nonlinear systems.  The 

intent of this paper is not to present estimation results 

based on EKF—that has been done elsewhere [3–10]—

rather, we point out that EKF has a number of flaws that 

can be improved upon fairly easily to improve state 

estimation.   

Sigma-point Kalman filtering (SPKF) is an alternate 

approach to generalizing the Kalman filter to state 

estimation for nonlinear systems and, based on analysis 

and actual testing, has been shown to be superior to the 

methods described so far.  

We proceed by first outlining the generic framework of 

model-based estimation, and then show how the present 

approach fits into that framework.  We then outline the 

model structure that is used for our cells, give some 

results and some concluding remarks. 

MODEL-BASED ESTIMATION 

REQUIRED STRUCTURE OF THE MODEL 

To use the given approach to estimate a cell’s state, we 

must have a “state-space” model of its dynamics: 

(1) xk+1 = f(xk,uk ,wk)

yk = g(xk ,uk ,vk)
 

(2) 

where xk  is the state vector at discrete-time index k, uk  

is the measured system input vector at time k, (perhaps 

including battery-pack current, temperature, etc.) and wk  

is unmeasured “process noise” (modeling inaccuracy of 

the cell model).  The system output is yk , and vk  models 

sensor noise.  The stochastic inputs wk  and vk  are 

assumed to be zero-mean white Gaussian random 

processes with covariance matrices Σw and Σv , 

respectively.  Equation (1) is called the “state equation”, 

(2) is called the “output equation”, and f( ) and g( ) are 

(possibly nonlinear) functions, specified by the particular 

cell model used. 

To be more specific, the system input vector uk  typically 

contains the instantaneous cell current ik.  It may also 

contain the cell temperature Tk, an estimate of the cell’s 

nominal capacity Ck , and/or an estimate of the cell’s 

internal resistance Rk, for example.  The system output 

is typically a scalar but may be vector valued as well.  

Here we consider the output to be the cell’s loaded 



terminal voltage—not at-rest open-circuit-voltage (OCV).  

The system’s state vector xk  in some way represents in 

summary form the total effect of all past input to the 

system so that the present output may be predicted 

solely as a function of the state and present input.  

Values of past inputs are not required.  Our method 

constrains the state vector to include SOC as one 

component, so that SOC may later be estimated using 

some form of Kalman filter. 

GENERAL FORM OF THE ESTIMATOR  

Model-based estimation, based on these equations, is a 

recursive process to update an estimate ˆ x k  of the true 

state xk .  Assuming for the moment that the model 

perfectly represents the cell, we can use the model to 

estimate what is happening in the cell in real time.  The 

following sequence of steps are repeatedly executed: 

 The actual input current to the cell is measured.  This 
value is used as input to the model. 

 The model predicts what the cell voltage must then 
be, based on the input current and on the model’s 
internal estimate of the cell state and parameters. 

 The actual cell voltage is measured.  If the model’s 
state and parameters are exact, then there is no 
difference between the actual cell voltage and the 
model’s estimate.  Any difference is because of an 
error in the estimate of cell state or parameters.   

 The cell-model state and parameter estimates are 
adapted to lower the cell voltage estimation error. 

 The updated state/parameter estimates are output to 
be used for whatever purposes are desired. 

 This process repeats every sampling interval (e.g., 
every one second). 

This same approach works even when the cell model is 
not in fact perfect, or when there is noise on the sensors, 
but adaptation of the model’s state and parameter 
estimates must be made more slowly because of the 
additional uncertainty. 

In order to optimally perform the adaptation step, the 
algorithm must internally weigh uncertainties in the 
model, uncertainties in the present state estimate, and 
uncertainties in the sensor inputs.  These are 
represented mathematically by covariance matrices of 
the appropriate variables.  The variables themselves are 
understood to hold the expected value of the quantities 
that they represent.  Since the algorithm must know 
these uncertainties, it has the added capability of being 
able to determine error bounds (for example, 3-sigma or 
6-sigma error bounds) on all estimated quantities. 

To more precisely discuss the mathematical operations 

performed by the estimator, we first define some 

notation.  A superscript “–” denotes a predicted quantity, 

a superscript “+” denotes an updated estimate of that 

quantity, a circumflex “^” denotes an estimated quantity, 

a tilde “~” denotes an estimation error, and Σx denotes 

the covariance of its subscripted variable.  Further, we 

define E[ ]  to be the statistically expected value of its 

argument, and 
  
Yk = {y0,K,yk}  to be the history of 

measurements until time k. 

This process is a kind of Kalman filtering, which is the 
optimal state estimator for linear systems.  The batteries 
are nonlinear, so we use different varieties of the Kalman 
filter known as extended Kalman filtering and sigma-
point Kalman filtering.  This paper presents the methods 
in some detail, and gives results showing what kind of 
estimation may be achieved using LiPB high-power cells 
in an HEV environment.  

Step 1: State estimate time update 
The first step computes the state estimate time update, 
which predicts the present value of the state given past 
measurements: 

ˆ x k
− = E[xk | Yk−1] = E[ f(xk−1,uk−1,wk−1) | Yk−1]. 

Step 2: Error covariance time update 
The second step determines the predicted state-estimate 

error covariance matrix Σ ˜ x ,k
−  based on a priori 

information and the system model. 

Σ ˜ x ,k
− = E[(˜ x k

−)(˜ x k
−)T ] = E[(xk − ˆ x k

−)(xk − ˆ x k
−)T ]. 

Step 3: Estimate system output 
The third step is to estimate the system’s output using 
present a priori information. 

ˆ y k = E[yk | Yk−1] = E[h(xk ,uk ,vk) | Yk−1]. 

Step 4: Estimator gain matrix 
The fourth step is to compute the optimal gain factor 
used when updating the state estimate, which is 

Lk = E[(xk − ˆ x k
−

)(xk − ˆ x k
−

)
T

] E[(yk − ˆ y 
k
)(yk − ˆ y 

k
)
T

]( )
−1

= Σ ˜ x ̃  y ,k
− Σ ˜ y ,k

−1 .

 

Step 5: State estimate measurement update 
The fifth step is to update the state estimate using the 
measured cell voltage, the predicted cell voltage, and the 
estimator gain matrix.   

ˆ x k
+ = E[xk | Yk ] = ˆ x k

− +Lk (yk − ˆ y k). 

Step 5 is computed in the same way for all variants of 

the Kalman filter, so is not elaborated on in the sequel.  

Notice that the output estimation error is scaled by the 

gain matrix and used to adapt ˆ x k .  The gain matrix tends 

to have large entries for states whose value is uncertain 

(high covariance) and small entries for measurements 

with a high degree of sensor noise.  The gain matrix 

optimally combines new and old information in the filter. 

Step 6: Error covariance measurement update 
The final step of the update mechanism is to update the 
state-error covariance matrix. 

Σ ˜ x ,k
+ = Σ ˜ x ,k

− −LkΣ ˜ y ,k
Lk

T
. 



THE EXTENDED KALMAN FILTER 

As mentioned earlier in this paper, EKF has two flaws 

related to assumptions made in order to propagate a 

Gaussian random state vector xk  through some 

nonlinear function: one assumption concerns the 

calculation of the output random variable mean, the other 

concerns the output random variable covariance.  

First, we note that EKF step 1 attempts to determine an 
output random-variable mean from the state-transition 
function f( ) assuming that the input state is a Gaussian 
random variable.  EKF step 3 makes a similar calculation 
for the output function h( ).  EKF makes the simplification 
E[ fn(x)] ≈ fn(E[x]), which is not generally true, and 

possibly not even close to true.  The SPKF to be 
described will make an improved approximation to the 
means in steps 1 and 3.  

Secondly, in EKF steps 2 and 4, the output-variable 
covariance is found by linearizing the nonlinear 
equations, resulting in a loss of accuracy.  SPKF uses a 
different method to compute covariances, improving 
these estimates as well.  

In both examples, SPKF greatly outperforms EKF.  We 
discuss why in the next section.  

THE SIGMA POINT KALMAN FILTER 

We have seen that the EKF approach to state estimation 

for nonlinear systems is to linearize the equations at 

each sample point using a Taylor-series expansion. 

Sigma-point Kalman filtering is an alternate approach to 

generalizing the Kalman filter to state estimation for 

nonlinear systems.  Instead of using Taylor-series 

expansions to approximate the required covariance 

matrices, a small fixed number of function evaluations 

are performed instead.  This has several advantages: (1) 

derivatives do not need to be computed (which is one of 

the most error-prone steps of EKF), also implying (2) the 

original functions do not need to be differentiable, (3) 

better covariance approximations are usually achieved 

than using EKF, allowing for better state estimation, and 

(4) all with comparable computational complexity to EKF.  

A set of points (sigma points) is chosen so that the 

(possibly weighted) mean and covariance of the points 

exactly matches the mean and covariance of the a priori 

random variable.  These points are then passed through 

the nonlinear function, resulting in a transformed cloud of 

points.  The a posteriori mean and covariance that are 

sought are then approximated by the mean and 

covariance of this cloud.  Note that the sigma points 

comprise a fixed small number of vectors that are 

calculated deterministically—unlike Monte Carlo or 

particle filter methods.  

Specifically, if an input random vector x  has dimension 

n , mean x , and covariance Σ ˜ x , then p +1 = 2n +1 sigma 

points are generated as the set   

  
X = x ,x + γ Σ ˜ x , x − γ Σ ˜ x { },   

with columns of   X  indexed from 0 to p, and where the 

matrix square root S = Σ  computes a result such that 

Σ = SST . Gamma is an algorithm tuning parameter that 

controls the a priori covariance of the sigma points.  

Common values are listed in Table I.  Usually, the 

efficient Cholesky decomposition [11,12] is used, 

resulting in lower-triangular S (although, any other 

method may be used).  The weighted mean and 

covariance of   X  agree with the original mean and 

covariance if we define the weighted mean as  

  
x = α

i
(m)

i=0

p
∑ Xi ,  

the weighted covariance as  

  
Σ ˜ x = α

i
(c ) (

i=0

p
∑ Xi − x )(Xi − x )T , 

  Xi as the ith column of   X , and both α
i
(m) and α

i
(c ) as 

real scalars with the necessary (but not sufficient) 

conditions that  

α
i
(m) = 1

i=0

p
∑  and α

i
(c ) = 1

i=0

p
∑ .   

The various sigma-point methods differ only in the 

choices taken for these weighting constants.  Values for 

the two most common methods—the Unscented Kalman 

Filter (UKF) [13–18] and the Central Difference Kalman 

Filter (CDKF) [19–21]—are summarized in Table I. The 

CDKF has only one “tuning parameter” h, which makes 

implementation simpler.  It also has marginally higher 

theoretic accuracy than UKF [20].   

To use SPKF in an estimation problem, we first define an 

augmented random vector xa  that combines the 

randomness of the state, process noise, and sensor 

noise. This augmented vector is used in the estimation 

process as described below.   

TABLE I: TWO SETS OF WEIGHTING CONSTANTS. 

 γ α
0
(m) α

k
(m) α

0
(c ) α

k
(c ) 

UKF 
L + λ

 

λ

L + λ
              

 

1

2(L + λ)

 

λ

L + λ
+

(1−α 2 + β)

 

1

2(L + λ)

 

CDKF h 
h2 −L

h2
 

1

2h2
 h2 −L

h2
 

1

2h2
 

λ = α 2 (L + k) −L  is a scaling parameter, (10
–2

 ≤ α ≤ 1).  

Note that this α is different from α (m)
 and α (c)

.  k is either 

0 or 3–L.  β incorporates prior information.  For Gaussian 

RVs, β=2.  h may take any positive value.  For Gaussian 

RVs, h = 3 .
 
 

 



SPKF step 1: State estimate time update 
At each measurement interval, the time update is 
computed by first forming the augmented a posteriori 
state estimate vector for the previous time interval:  

ˆ x 
k−1
a,+ = (ˆ x k−1

+
)
T

,0,0[ ]
T

,  

and the augmented a posteriori covariance estimate: 

Σ ˜ x ,k−1
a,+ = diag(Σ ˜ x ,k−1

+ ,Σw,Σv ) .   

These are used to generate the p +1 sigma points:  

  
X

k−1
a,+ = ˆ x 

k−1
a,+

, ˆ x 
k−1
a,+ + γ Σ ˜ x ,k−1

a,+
, ˆ x 

k−1
a,+ − γ Σ ˜ x ,k−1

a,+ 
 
 

 
 
 

.  

From the augmented set, p +1 vectors comprising the 

state portion 
  
X

k−1
x,+  and p +1 vectors comprising the 

process-noise portion 
  
X

k−1
w,+  are extracted.  The state 

equation is evaluated using all pairs of 
  
X

k−1,i
x,+  and 

  
X

k−1,i
w,+ , 

yielding the a priori sigma points  

  
X

k,i
x,− = f(X

k−1,i
x,+ ,uk−1,X

k−1,i
w,+ ).  

Finally, the a priori state estimate is computed as 

  
ˆ x k

− = α
i
(m)X

k,i
x,−

i=0

p
∑ . 

SPKF step 2: Error covariance time update 
Using the a priori sigma points from step 1, the a priori 
covariance estimate is computed as  

  
Σ ˜ x ,k

− = α
i
(c) X

k,i
x,− − ˆ x k

−( )Xk,i
x,− − ˆ x k

−( )
T

i=0

p
∑ . 

SPKF step 3: Estimate system output 
The system output is estimated by evaluating the model 
output equation using the sigma points describing the 
spread in the state and noise vectors. First, we compute 
the points  

  
Y
k,i

= h(X
k,i
x,− ,uk ,X

k−1,i
v,+ ,k) .   

The output estimate is then  

  
ˆ y k = α

i
(m)Y

k,ii=0

p
∑ .   

SPKF step 4: Estimator gain matrix 
To compute the estimator gain matrix, we must first 
compute the required covariance matrices. 

  

Σ ˜ y ,k = α
i
(c ) Yk,i − ˆ y k( ) Yk,i − ˆ y k( )

T

i=0

p
∑

Σ ˜ x ̃  y ,k
− = α

i
(c) X

k,i
x,− − ˆ x k

−( )Yk,i − ˆ y k( )
T

i=0

p
∑

  

Then, we simply compute Lk = Σ ˜ x ̃  y ,k
− Σ ˜ y ,k

−1 . 

SPKF step 6: Error covariance measurement update 
The final step is calculated directly from the optimal 

formulation:  

Σ ˜ x ,k
+ = Σ ˜ x ,k

− −LkΣ ˜ y ,kLk
T .  

ENHANCED-SELF-CORRECTING CELL MODEL 

The model that we use in this paper is one that we have 
called the “enhanced self-correcting” (ESC) cell model 
[5–10].  In order to use the Kalman methods we propose 
to estimate SOC, the cell model must be represented in 
the discrete-time state-space form of (1) and (2) 
constraining SOC to be a member of the state vector.  
The difference between the models depends only on the 
definitions of xk , uk , yk , f( ) and g( ). 

The basis for the SOC state-equation is developed as 

follows:  If z(t) = SOC, we know that 

z(t) = z(0) −
η(i(τ )) i(τ )

C0

t
∫ dτ , (3) 

where C is the nominal capacity of the cell, i(t) is the cell 

current at time t, and η(i(t))  is the Coulombic efficiency 

of the cell.  A discrete-time approximate recurrence may 

then be written as 

zk+1 = zk −
η(ik) ik ∆t

C
, (4) 

where ∆t is the sampling period (in hours).  Equation (4) 

is used to include SOC in the state vector of the cell 

model as it is in state equation format already, with SOC 

as the state and ik as the input.   

The dynamics of the change of polarization voltage are 
also captured by a state equation.  We add “filter states” 
with linear dynamics: 

fk+1[ ]= diag(α)[ ] fk[ ]+ ik .  

The vector α  has N filter “poles”, with |α |< 1 for stability, 

corresponding to time constants of the polarization 

voltage dynamics.  We use N = 2 . 

A further phenomenon captured by a state equation is 
that of hysteresis.  A cell that has recently undergone a 
charge event will have a higher rest voltage than one that 
has undergone a discharge event, even at the same 
SOC.  That is, voltage does not decay to OCV, but to 
OCV plus/minus a factor based on the hysteresis of the 
cell.  We note that hysteresis is not a phenomenon 
generally associated with lithium-ion systems, since most 
applications have been in the light portable electronics 
area where SOC accuracy is not as critical as in the HEV 
application and where temperatures are not as extreme.  
It is, however, very pronounced at low temperatures and 
can lead to SOC errors as large as ±40% if the estimate 
is based simply on OCV (even with full cell relaxation.)   

A hysteresis state implementing a linear-time-varying 
difference equation may be modeled as: 

hk+1 = exp −
η(ik)ikγ∆t

C

 

 
 

 

 
 hk + 1− exp −

η(ik)ikγ∆t

C

 

 
 

 

 
 

 

 
 

 

 
 M. 

     (5) 

M  represents the maximum hysteresis voltage at the 
present temperature, and γ  is a hysteresis rate constant.  



The three components of the system state are combined: 

xk = fk
T hk zk[ ]

T
.  (6) 

The corresponding equations for fk , hk , and zk  also 

combine to form the vector function f( ). 

The cell terminal voltage is modeled by the output 

equation g( ).  With the states of the system as defined, 

the ESC model computes: 

yk = OCV(zk) + C fk[ ]−Rik + hk. (7) 

The voltage is computed as the sum of the open-circuit-

voltage at the present SOC, plus a weighted sum of the 

polarization voltage states, minus ohmic losses, plus 

hysteresis.  A further constraint on (7) is that during a 

constant-current dis/charge, the polarization filter 

voltages must converge to zero so that 

yk → OCV(SOC) − I×R  (plus hysteresis) [5]. 

The ESC-model form is now defined.  In order to 
implement the model for a specific cell electrochemistry, 
however, we require knowledge of the parameters of the 
model.  Specifically, we must determine the OCV versus 
SOC relationship, the filter time constants α , the number 
of filter states N, hysteresis rate factors, and so forth.  
Details on how this has been done on the cells in 
question in this paper may be found in [6]. 

RESULTS OF TESTING  

In this section we present some results from testing the 
SPKF on a battery pack comprising forty high-power 
LiPB cells described elsewhere [6].  At the time of this 
testing, the cells in the pack had undergone considerable 
abuse from previous testing, had lost about 7% of their 
original capacity, and had increased resistances.  
Nevertheless, the SPKF methods, using a model that 
represents new-cell dynamics, produce very good 
results.  Note that more complete results of testing SPKF 
versus EKF are available in [22–23].  Our purpose here 
is to present some more recent testing data and to point 
out a few features of the algorithm. 
 
Raw measured data for the test, captured using the “byte 
pipe” mechanism of the Aerovironment ABC-150 cycler, 
are presented in Fig. 2.  All 40 cell voltages are plotted, 
although they are too similar to easily distinguish.  Pack 
current and average cell temperatures for this test are 
also plotted.  Note that the test comprised a 1C constant-
current charging portion, a dynamic drive cycle portion, a 
rest, the drive cycle repeated, and another rest.  This test 
is designed to validate specific aspects of the SPKF 
algorithm:  The SOC during constant-current events 
should converge to a straight line; the SOC during rest 
events should converge to the value predicted by OCV 
(neglecting hysteresis, which is small at the temperature 
of this test); the SOC during a drive cycle should have 
the same pattern computed by coulomb counting.  
 

In Fig. 3, five lines are plotted: One is the SOC as 

estimated in the BMS by the Kalman filters (thick black 

line), another is the SOC as estimated in post-processing 

by “C” code on a PC (red dashed line), another is SOC 

as estimated in post-processing using the Tino method 

(thin gray line), and two are Coulomb-counting methods 

estimated in post-processing using either the ABC-150 

current-sensor log or the BMS current-sensor log 

(remaining thin dashed lines: black and blue, 

respectively). We note a few things:  

 

 

Figure 2.  Measurement data from tests. 

 

Figure 3.  SOC estimation results. 

 Both Coulomb-counting methods are post-processed 
using the recorded ABC-150 current and BMS 
current.  A cell capacity of 4.67Ah is assumed (it is a 
reasonable value for this pack in its present state—it 
might be optimized more, but this begs the question 
of how we would adaptively optimize capacity without 
a Kalman filter).  The Coulomb-counting methods are 
initialized using an SOC value derived from the first 
voltage readings, just like the Tino method.  

 The post-processed “C” Kalman filter is initialized 
slightly differently than the BMS Kalman filter, so we 
expect that their initial values might be somewhat 
different (especially if the pack has not rested before 
the test began).  

The BMS Kalman filter is initialized some time before the 
test began.  In some cases it is possible that the BMS 



Kalman filter was not reset/initialized right before the test, 
but there is no way to determine this from the recorded 
data.  Despite different initializations, we expect the C 
and BMS SPKFs to converge to each other.  

Note the transient at around time 120 minutes where all 
readings are incorrect.  This is most likely caused by a 
glitch in the communication between the BMS and the 
ROS computer; that is, it is likely that the measurements 
were correct but were not logged correctly. Two seconds 
of data were lost.  

It is important to note that the SPKF SOC estimator has 
a built-in mechanism for determining whether a 
measurement is statistically valid (the pre-fit residual 
method: if a measurement is more than six sigma from 
its expected value, where sigma is continuously updated 
depending on cell state, the measurement is considered 
erroneous and discarded). This mechanism kept the bad 
measurement from disturbing the operation of the SPKF.  

All methods appear to have initialized well.  The Tino 
SOC is bad at the transient, but the SPKF SOC estimate 
is very good.  Notice that the bias has been correctly 
identified—using a method beyond the scope of this 
paper—even though the BMS-Ah SOC is dropping 
quickly at the end of the test, the BMS SPKF SOC has 
converged to the correct value.  If one believes steady-
state Tino estimates, the SOC error is less than 2% at all 
times.  

CONCLUSION 

This paper presents results of using model-based 
estimation, particularly the sigma-point Kalman filter, to 
estimate SOC for LiPB cells in an HEV battery pack.  
The method works very well, typically producing RMS 
SOC estimation error on the order of 2% for room-
temperature operation.  Some other features of the 
algorithm include: the ability to provide error bounds on 
the estimated quantities, and the ability to detect 
erroneous sensor data using the internal state and 
uncertainties. 
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