Experiences with a Signals First Approach to the EE Curriculum*

Rodger Ziemer and Gregory Plett ECE Department, University of Colorado at Colorado Springs

*This material is based upon work supported by the National Science Foundation under grant EEC-0431953

History and Motivation

Began redesign of our circuits/systems curriculum in 2004 with writing and award of an NSF grant; eventually will encompass 38 sem hours

Multiple goals

- Appeal to students' interest in and use of modern devices such as iPods, CD players, cell phones, etc.
- Address multiple learning styles sensing/feeling, watching, thinking, doing (Kolb – perception and processing)
- Encourage motherhood and apple pie lifelong learning, undergraduate research, more and varied writing experiences earlier, etc.
- About six months into the NSF grant, decided to go with the "signal processing first" approach of Ga Tech and others
 - Taught "Intro to Signals and Systems" for the first time in fall 2005, second time in spring 2006.
 - □ Follow-on circuits course taught in spring 2006 (Ga Tech authors)
 - Second circuits/signal processing course to be taught fall 2005
 - Courses are packaged in a four-semester-hour format (two periods lecture; one period lab per week)
- Really based on successful experience with freshman robotics course appealing to a variety of learning styles

Old and New Curricula Compared

Schedule: Intro to Signals & Systems

Monday	Wednesday	Friday
Ch 1: Introduction	Ch 2: Sinusoids	Lab 1: Intro to MATLAB
Ch 2: Sinusoids	Ch 3: Spectrum representation	Lab 2b: Complex exponentials
(Labor Day)	Ch 3: Spectrum representation	Lab 3: AM and FM signals
Ch 3: Spectrum representation	Ch 4: Sampling and aliasing	Lab 4: Synthesis of sinusoidal signals
Ch 4: Sampling and aliasing	Ch 5: FIR filters	Lab 4: Synthesis of sinusoidal signals
Ch 5: FIR filters	Ch 5: FIR filters	Lab 6: Digital images; A/D and D/A
Ch 6: Freq. resp. of FIR filters	Ch 6: Freq. resp. of FIR filters	Lab 6: Digital images; A/D and D/A
Ch 6: Freq. resp. of FIR filters	Review for midterm	Lab 7: Sampling, convol., FIR filtering
Midterm Examination	Ch 7: z-transform	Lab 7: Sampling, convol., FIR filtering
Ch 7: z-transform	Ch 8: IIR filters	Lab 8: Freq. resp: bandpass/nulling
Ch. 8: IIR filters	Ch 8: IIR filters	Lab 8: Freq. resp: bandpass/nulling
Ch. 8: IIR filters	Ch 9: Continuous-time signals & syst.	Lab 9: Encoding/decoding TT signals
Ch 9: Continuous-time signals & syst.	Ch 9: Continuous-time signals & syst.	Lab 9: Encoding/decoding TT signals
Ch 10: Cont. time frequency response	(Thanksgiving)	(Thanksgiving)
Ch 11: Fourier transform	Ch 11: Fourier transform	Lab 11:PeZ, a, n, omega domains
Ch 11: Fourier transform	Ch 12: Applications	Final project due

Kolb 4MAT Learning Cycle

Concrete Experience (Sensing/Feeling)

Quadrant 4: What if?	Quadrant 1: Why?
Open-ended problems/ laboratories	Role playing/ journal writing
Capstone/ design undergraduate research	Field trips/ simulations
Group problem solving/ project reports	Motivational examples/ stories
Think tanks/ student lectures	Interactive discussion/ lecture
Problems prepared by students	Class/group discussion
Homework problems/ guided laboratories	Formal lecture, visual aids, notes
Computer simulation/ demonstrations	Textbook reading assignment
Objective examinations	Instructor problem solving/ demonstration
Individual report	Professional meeting/ seminar
Computer-aided instruction	Independent research/ library search
Quadrant 3: How?	Quadrant 2: What?

Abstract Conceptualization (Thinking)

Active Experimentation (Doing)

Intro to Signals and Systems Compared

with Kolb Cycle

- Quadrant 1: Why?
 - Motivational examples in lecture sessions
 - Examples in lab (inverse FIR filter for echo and image blurring)
- Quadrant 2: What?
 - Lectures
 - Visual aids on CD
 - Handouts
 - Solved examples by instructor, in book, on CD
- Quadrant 3: How?
 - Homework problems and weekly quizzes (solutions provided)
 - Lab reports (prelab and formal)
 - Computer aids for labs and lecture material (on CD)
- Quadrant 4: What if?
 - Project (noisy speech signal with echo; design filters to enhance)
 - Some aspects of lab experiments

Example GUI from Signal Processing First

(dconvdemo)

Survey and Anecdotal Data from "Signals and Systems"

- Used a student-scored survey instrument. Fall 2005/spring 2006 percentages in parentheses (about 1/3 of class responded each offering):
 - active vs reflective learners (75%)(57%)
 - sensing vs intuitive learners (75%)(43%)
 - visual vs verbal learners (75%)(71%)
 - sequential vs global learners (63%)(30%)
- Anecdotal results
 - Come into course knowing trig; applying it a challenge
 - Workload heavy for both professor and student
 - First part of course a challenge; z-transform and on easier
 - Students' performance rose to level of expectations

Schedule: Circuits and Systems I

Monday	Wednesday	Friday
(Martin Luther King Observance)	Ch 1: Circuit elements and models	Lab 1: Digital multimeter
Ch 1: Circuit elements and models	Catch-up day in lab	Lab 1: Digital multimeter
Ch 1: Circuit elements and models	Ch 1 & Ch 2: Writing circuit equations	Lab 2: Kirchoff's laws
Ch 2: Writing circuit equations	Ch 2: Writing circuit equations	Lab 2: Kirchoff's laws
Ch 2: Writing circuit equations	Ch 3: Subnetworks	Lab 3: Oscilloscope
Ch 3: Subnetworks	Ch 4: Operational amplifiers	Lab 3: Oscilloscope
Ch 4: Operational amplifiers	Catch-up day in lab	Lab 4: Simple op-amp circuits
Ch 4: Operational amplifiers: L, C	Ch 4: Op-amps: 1 st & 2 nd order sol'ns	Lab 4: Simple op-amp circuits
Catch-up day in lab	Ch 4: Op-amps: 1 st & 2 nd order sol'ns	Lab 5: Complex op-amp circuits
Ch 4: Op-amps: 1 st & 2 nd order sol'ns	Midterm Examination	Lab 5: Complex op-amp circuits
(Spring break)	(Spring break)	(Spring break)
Ch 5: Laplace transform	Ch 5: Laplace transform	Project in lab
Ch 6: Circuits in the Laplace domain	Ch 6: Circuits in the Laplace domain	Project in lab
Ch 6: Circuits in the Laplace domain	Ch 6: Circuits in the Laplace domain	Project in lab
Ch 6: Circuits in the Laplace domain	Ch 7: System functions	Project in lab
Ch 7: System functions	Ch 7: System functions	Demonstrate project in lab
Ch 7: System functions		

Schedule: Circuits and Systems II

Monday	Wednesday	Friday
Ch 8:Sinusoidal input signals	Ch 8:Sinusoidal input signals	Lab 1: Warmup
Ch 8:Sinusoidal input signals	Ch 8:Sinusoidal input signals	Lab 1: Lab
(Labor Day)	: AC power/transformer circuits	Lab 2: Warmup
: AC power/transformer circuits	: AC power/transformer circuits	Lab 2: Lab
: Fourier transform review	Ch 9: Frequency response (Bode)	Lab 3: Warmup
Ch 9: Frequency response (Bode)	Ch 9: Frequency response (Bode)	Lab 3: Lab
Ch 9: Frequency response (Bode)	: Active feedback example; Routh	Lab 4: Warmup
: Active feedback example; Routh	Ch 10: (Analog) Filter circuits	Lab 4: Lab
Midterm Examination	Ch 10: (Analog) Filter circuits	Lab 5: Warmup
Ch 10: (Analog) Filter circuits	Ch 10: (Analog) Filter circuits	Lab 5: Lab
Ch 10: (Analog) Filter circuits	Ch 10: (Analog) Filter circuits	Lab 6: Warmup
: Signal processing review	: Digital filter design	Lab 6: Lab
: Digital filter design	: Digital filter design	Lab 7: Warmup
: Digital filter design	(Thanksgiving)	(Thanksgiving)
: Hybrid system integration	: Hybrid system integration	Lab 7: Lab
: Hybrid system integration	: Hybrid system integration	Final project due

Future Plans

- Teach Circuits and Systems II for the first time fall semester, 2006 – much development yet to do
- Propagate the format developed for Intro to Signals and Systems, Circuits and Systems I & II to following courses – Electronics I & II
- Start developing substance for one thread: *Robotics* or *Wireless*