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Abstract 

This paper describes advances in models and methods used to estimate hybrid-electric-vehicle (HEV) 
battery-pack state-of-charge (SOC) using extended Kalman filtering (EKF).  The electrochemical cells in 
the battery pack are Lithium Ion Polymer based, have a nominal capacity of about 7.5 Ah, and are 
optimized for power-needy applications.  The discharge curve of these cells is very flat, which is desirable 
for some reasons, but also makes SOC estimation quite challenging and motivates the use of advanced 
methods. 

In earlier papers [1–2], we presented several cell models that may be used with the EKF method, and the 
EKF method of SOC estimation itself.  Our best cell model was a “Radial Basis Function” (RBF) type, 
whose parameters were optimized by a “black-box” system identification procedure.  We have 
subsequently found that although this model worked well on a cell level, it was too slow and exhibited 
unreliable performance when ported to the battery management system of the pack. 

In this paper, we describe a new cell model that alleviates these problems.  The model parameters are 
optimized by “gray-box” system identification and most have direct physical interpretation.  The model 
structure includes effects of: internal resistance, hysteresis, and relaxation time constants.  It is greatly 
simplified with respect to the RBF model, allowing the SOC estimation algorithm to execute in about 
1/50 of the time it did before. 

Results indicate that the new cell model with EKF provides SOC estimates that are about as precise as 
those made with RBF, but are more accurate and reliable.  Copyright 2003 EVS20 

Keywords: Battery model, battery management, lithium polymer, state of charge, HEV.  

1.  Introduction 

This paper describes advances in models and methods used to estimate hybrid-electric-vehicle (HEV) 
battery-pack state-of-charge (SOC) using extended Kalman filtering (EKF).  The electrochemical cells in 
the battery pack are Lithium Ion Polymer based, jointly developed by LG Chem Ltd. (Daejeon, Korea) 
and Compact Power Inc. (Colorado, USA), have a nominal capacity of about 7.5 Ah, and are optimized 
for power-needy applications.  The discharge curve of these cells is very flat, which is desirable for some 
reasons, but also makes SOC estimation quite challenging and motivates the use of advanced methods.  
The EKF method, in particular, is able to achieve very good results [2], and provides the additional 
feature of supplying dynamic error bounds on the SOC estimate.   

In order to use EKF to estimate SOC, we require an electrical input-output model of the behavior of 
Lithium Ion Polymer Battery (LiPB) cells.  The cells are treated as nonlinear dynamic systems, 
represented in a discrete-time state-space form.  Specifically, we assume the form 

 xk+1   = f (xk, uk) + wk (1) 
  yk  = g(xk, uk) + vk, (2) 

where xk is the system state vector at discrete-time index k, uk is the measured exogenous system input at 
time k (which may include measurements of battery-pack current, temperature and so forth) and wk is 
unmeasured “process noise” affecting the system state (and also models the inaccuracy of the cell model, 
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to some extent). The system output is yk, and vk is the measurement noise that usually models noise in 
sensors.  Equation (1) is called the “state equation”, (2) is called the “output equation”, and f ( ) and g( ) 
are (possibly nonlinear) functions, specified by the particular cell model used. 

To be more specific, the system input vector uk typically contains the instantaneous cell current ik.  It may 
also contain the cell temperature Tk, an estimate of the cell’s capacity C, and/or an estimate of the cell’s 
internal resistance Rk, for example.  The system output is typically a scalar but may be vector valued as 
well.  Here we consider the output to be the cell’s loaded terminal voltage—not at-rest open-circuit-
voltage (OCV).  The system’s state vector xk in some way represents in summary form the total effect of 
all past input to the system so that the present output may be predicted solely as a function of the state and 
present input.  Values of past inputs are not required.  Our method constrains the state vector to include 
SOC as one component, so that SOC may later be estimated using EKF. 

Many cell models have been proposed in the literature for many purposes.  References [1,3] outline a 
number of these.  The specific application we have in mind is to model cell dynamics for the purpose of 
state-of-charge estimation in a hybrid electric vehicle (HEV) battery pack.  The HEV application is a very 
harsh environment with rate requirements up to about ±25C, very dynamic rate profiles, and operating 
temperatures between –30ºC and 50ºC.  This is in contrast to relatively benign portable-electronic 
applications with constant power output and fractional C rates.  Methods for cell modeling and SOC 
estimation that work well in portable electronic devices often fail in the HEV application.  If precise SOC 
estimation is required by the HEV, then a very accurate cell model is necessary. 

In earlier papers [1–2], we presented several cell models that may be used with the EKF method, and the 
EKF method of SOC estimation itself.  Our best cell model was a “Radial Basis Function” (RBF), whose 
parameters were optimized by a “black-box” system identification procedure.  We have subsequently 
found that although this model worked well on the cell level, it was too slow and exhibited unreliable 
performance when implemented in the battery management system of a pack.  In this paper, we describe a 
new cell model that alleviates these problems.  The model parameters are optimized by “gray-box” 
system identification and most of the parameters have direct physical interpretation.  The model structure 
includes effects of: internal resistance, hysteresis, and relaxation time constants.  The model parameters 
vary with temperature to give good SOC estimation over a wide range of operating conditions.  It is also 
greatly simplified with respect to the RBF model, allowing the SOC estimation algorithm to execute in 
about 1/50 of the time it did before.  The method is also very general, and we expect it to work well in 
many other battery systems with different chemistries and applications. 

This paper is organized as follows: First, we review cell models from [1], and explain their shortcomings.  
Secondly, we present some evolutionary changes to these models that have improved performance, along 
with methods for determining model parameters.  The testing equipment, cells and regimen for cell 
modeling are described.  Finally, the results are evaluated and conclusions made.  

2.  Legacy Cell Models 

In order to use the Kalman methods we propose to estimate SOC, the cell model must be represented in 
the discrete-time state-space form of (1) and (2) (with the constraint that SOC is a member of the state 
vector).  The difference between the models, then, depends only on the definitions of xk, uk,  f ( ) and g( ). 

The basis for the SOC state-equation is developed as follows:  If SOC,)( =tz  we know that 
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where C is the nominal capacity of the cell, i(t) is the cell current at time t, and η(i(t)) is the Coulombic 
efficiency of the cell.  A discrete-time approximate recurrence may then be written as 
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where ∆t is the sampling period (in hours).  Equation (4) is used to include SOC in the state vector of the 
cell model as it is in state equation format already, with SOC as the state and ik as the input.  Our cell 
models will then be differentiated by the additional components in the state vector and the functional form 
of f ( ) and g( ). 

2.1  The Single-State “Combined” Cell Model 

The simplest models in [1] have a single state—SOC—and so share a common state equation (4).  The 
difference between them is the output equation.  Several different forms were suggested, culminating in 
the “combined” cell model that includes all of the terms from the individual forms: 
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where yk is the cell terminal voltage, R is the cell internal resistance (different values may be used for 
charge/discharge and at different SOC levels if desired), and K0 through K4 are constants chosen to make 
the model fit the data well.  The unknown quantities in (5) may be estimated using a system identification 
procedure from cell test data.   

2.2  The Four-State “Filter-State” Cell Model 

The combined model of (5) may be very quickly identified and implemented.  Its serious limitation is that 
it omits any description of cell voltage relaxation during rest periods (and equivalently, time constants on 
dis/charge events).  Since the cell model must accurately predict true cell behavior in a dynamic HEV 
environment, we find it is essential to include these relaxation effects. 

The filter-state model adds states to explain relaxation effects: a single-state filtered SOC, and two-state 
filtered input current.  The state that filtered SOC was implemented as: 
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The states that filtered ki  were implemented as: 
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The output equation may be written as: 

 [ ][ ] .10
)(

mod
71211

)(

z
10

9

8
6 4444 34444 21

44444 344444 21 k

k

Ifn

k
I

k

zfn

kk
k

k Iwfwwfzw
wz

w
wy ++++

+
+=  (8) 

where Ik
mod = η(ik) |ik|n ∆t/Cp, n is the Peukert exponent and Cp is the Peukert capacity.  The output yk is 

terminal voltage, as before.  The parameters of the model may be found by system identification using 
measured cell data.  We found that the model was able to predict cell behavior best when different sets of 
parameters were used for different levels of input current ik. 

2.3  The Fully Nonlinear “Radial Basis Function” (RBF) Cell Model 

Adding linear filter states to the model did improve its ability to predict a cell’s behavior.  However, as 
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the LiPB cells themselves are nonlinear systems, we felt that we could improve even further by 
considering a fully nonlinear dynamic cell model.  For this purpose, we used radial-basis-function (RBF) 
networks and a black-box system identification procedure.  

An RBF network makes a local approximation of the function it models.  It computes its output as a 
weighted sum of (hyper) Gaussian shapes.  Specifically, it computes the function 
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where N is the number of bases, wj is the weight connecting the jth basis function to the output, σj is the 
“standard deviation” or width parameter of the jth basis function, xk is the vector input to the network, and 
tj is the center of the jth basis function.  The parameters wk of the RBF network may be identified from 
data using a system-identification procedure.  Here, uk includes the states of the system: e.g., 

T
kkk yx ]SOC,[ 1−=  as well as the cell current ik. 

2.4  Problems with the Legacy Cell Models 

Subsequent to papers [1–2], we implemented the RBF model, along with its EKF SOC estimator, in a 40-
cell battery management system.  We chose RBF because of its seemingly superior attributes: very 
precise cell modeling, scalable complexity (accuracy could be improved to any desired level by adding 
more basis function kernels), and very accurate SOC prediction and fast recovery in the event of a bad 
initial SOC guess. 

However, many of these attributes, validated in simulation, did not result in anticipated performance in 
the actual implementation.  Some simple tests showed a lack of robustness: 

1) A constant-current charge/discharge should make the SOC ramp up/down at the slope I/C [A/Ah].  
In practice, the slope using RBF was often wrong. 

2) During a rest period, cell terminal voltage converges to OCV (neglecting hysteresis effects, 
described later), and estimated SOC should converge to the SOC predicted by OCV.  In the 
implementation, we observed SOC to drift considerably, not converging to the correct value. 

Why?  The most convincing explanation of the RBF model’s failure is based on a vulnerability of all non-
linear models.  These models will predict system behavior best when the system is operating in the same 
regime where data was collected to train the model.  If the system is operating in some other regime, the 
model must interpolate or extrapolate its learned behavior (a phenomenon known as generalization).  
While RBF systems are known to generalize “well”, this one was not able to generalize enough.  The 
learned behavior was a sequence of HEV drive cycles, which were too different from constant current or 
rest to be able to extrapolate model behavior. 

This paper proceeds to discuss some insights into the three cell models, garnered from hindsight, and uses 
them to craft a new cell model.  In particular, the new model forces yk to converge to OCV after a rest 
period, and it forces yk to converge to OCV–I×R for a constant-current dis/charge.  Furthermore, the cell 
model is much simpler than RBF, allowing much faster execution of the SOC algorithm. 

3.  Evolutionary Changes to Improve the Cell Models 
3.1  Discussion of the Legacy Cell Models 

Discussion of the Combined Model 
The combined-model output equation is a static function of SOC and cell current ik.  It may be broken 
into two additive parts: a part depending only on SOC, and another depending only on ik, as shown in (5).  
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The part depending only on SOC bears closer examination.  When parameter values {K0…K4} are fit to 
this function, we plot it versus SOC and get the result in Figure 1 (dashed blue curve).  Overlaid is the 
OCV as a function of SOC (solid red curve).  We see that this function is trying to fit OCV(zk).  So, a 
better model—using table-lookup (for example) for OCV as a function of SOC—is: 

Simple model: yk = OCV(zk) – R ik. (10) 

An examination of [1, Fig. 2], reproduced as Figure 2 here,1 shows that the combined model predicted yk 
well when a constant charge/discharge cycle was taking place, but the rest voltage was incorrect.  This is 
partially explained by the difference between the two curves in Figure 1 and partially by cell hysteresis 
(note that the cell voltage is always lower than model voltage on discharge, and greater on charge).  Using 
(10), we get the results in Figure 3, which are very similar to those of Figure 2, but are accomplished with 
a simpler model.  Cell relaxation effects are still ignored. 

Discussion of the Filter State Model 
Examining the filter-state model output equation in (8), we see that the output again breaks up into a 
function of SOC plus a function of ki .  Hindsight shows that the function of SOC was a poor choice.  
There is no guarantee that OCV→ky  in a rest period, the OCV characteristic is not modeled well as a 
function of SOC, and further work indicates that filter states on SOC are not necessary.  The function of 

ki  also does not guarantee that RIyk ×−→ OCV(SOC)  on constant-current dis/charge. 

Discussion of the RBF Model 
The output of the RBF model in (9) is not separable into additive parts based on SOC and on ki .  RBF is 
very much a black-box approach to cell modeling and gives no insight into cell behavior.  In addition, no 
guarantee is given that OCV→ky  in a rest period or RIyk ×−→OCV(SOC)  on CC dis/charge. 

3.2  The Self-Correcting Model 

Based on experience gained from the preceding, it appears that a cell model needs to be of the form: 
 .)(filt)OCV(
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1 The cell tests performed for Figures 2–5 are discussed in greater detail in Section 4.  Here, our goal is for the cell-
model predicted voltage to closely approximate the true cell voltage. 
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Figure 1:  True OCV and OCV estimated by “combined” model, plotted versus SOC. 
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This is again separable into a part based on SOC and another based on ki .  SOC contributes the long-term 
dc level (bias) to the output and ki  and its history contribute the short-term variation around this level.  
SOC is no longer filtered, as in the filter-state version and RBF versions—it does not make sense to have 
a moving bias point. 

The filter “filt(  )” must satisfy two criteria:  (1) After a long rest period its output must be zero so that 
OCV→ky ; (2) During a constant-current dis/charge, its output must converge to zero so that 

RIyk ×−→OCV(SOC) .  The first criterion is satisfied by a stable linear filter, and the second is 
satisfied by a linear filter with zero dc gain.  Both of these may be enforced in the filter design. 

The self-correcting model is: 
  (12) 
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The vector α  has N filter “poles” with 1|| <α , and C has N weighting parameters.  There are 2N+2 
parameters to the model, assuming that both charge and discharge resistances are modeled, and a value of 

4≈N  works well.  This is much fewer than the 900+ parameters for the RBF model. 

We compare Figure 4 with [1, Figs. 2–4].  The prediction of the self-correcting model appears to be on 
par with the filter state model in [1, Fig. 3], but somewhat worse than the RBF model in [1, Fig. 4]. 

Results of EKF SOC estimation using the self-correcting model are better than the SOC prediction of the 
“combined” model, and a little worse than the SOC prediction of the RBF model.  However, the model is 
much more robust due to its self-correcting nature.  In particular, when the initial SOC guess is incorrect, 
the self-correcting model very quickly recovers the correct SOC.  It is on the same order of speed as the 
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Figure 2:  Cell voltage tracking using the 
“combined” model from [1].  Solid red line is 
true cell voltage; dashed blue line is voltage 
predicted by cell model.  Cell tests were 
pulsed current at ±1C, ±2C and ±4C rates, 
punctuated with rest periods. 
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“combined” model, and much better than the other two models.  This may be explained by noticing that 
the voltage bias is dependent only on SOC, not filtered versions thereof, nor mixtures of SOC and ki .  In 
the “credit assignment problem” that assigns credit/blame for the difference between the measured 
voltage and estimated voltage, the Kalman filter can now blame a bad bias point on the SOC state and 
poor dynamic fluctuation on the filter states.  This was the downfall of the filter-state model where SOC 
provided a moving bias point, and a constant bias modeling error might then be attributed to both SOC 
states and filter states, diluting the true blame. 

3.3.  The Enhanced Self-Correcting Model 

The self-correcting model structure worked quite well in an actual implementation, so long as the pack 
was at room temperature.  Performance at low temperatures was poor.2  We have found that cell voltage 
hysteresis is considerable at low temperature and must be included in the model.  (For a good paper 
describing electrochemical hysteresis, see Reference [4]).  

The term hysteresis is derived from the Greek hustereia, “to arrive late”.  The cell voltage lags the 
predicted voltage in some sense.  A more appropriate definition for us might be “a characteristic of a 
system in which a change in the direction of the independent variable (cell current) leads to the dependent 
variable (cell voltage) failing to retrace the path it followed in the forward direction.” [4]  The bottom line 
is that for each SOC there are more than one stable at-rest cell voltages (a range of values are possible). 

We illustrate this by showing dis/charge curves at the C/25 rate at 20ºC in Figure 6.  The terminal voltage 
for discharge is the lower curve, and the terminal voltage for charge is the upper curve.  Two distinct 

                                                      
2 Full temperature-dependent cell modeling is beyond the scope of the discussion here. 
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Figure 3:  Cell voltage tracking using the 
“simple” model of (10). Solid red line is true 
cell voltage; dashed blue line is voltage 
predicted by cell model.  Cell tests were 
pulsed current at ±1C, ±2C and ±4C rates, 
punctuated with rest periods. 
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voltages exist for each SOC.  Half the difference between these voltages is the polarization voltage of the 
cell.  Only a small part of the polarization is due to the I×R drop (about 1.2mV here) and the remainder is 
due to hysteresis effects (about 25mV here).  

These curves comprise the “major hysteresis loop,” corresponding to full cell charge and discharge.  
Minor hystereses loops are encountered when a partial charge is followed by a partial discharge, and vice 
versa.  The polarization does not immediately flip sign on a current reversal but slowly decays from one 
leg of the major hysteresis loop to the other.  This transition may be modeled by adding a “hysteresis 
state” to the state equation.  The hysteresis state is not a differential equation in time but in SOC.  Let 

)(th  be the hysteresis voltage as a function of time, and let dtdzz /=& .  Then, 

 ( ),),(),()sgn(),( tzhzzMz
dz

tzdh
−= &&γ  (14) 

where ),( zzM &  is a function that gives the maximum polarization due to hysteresis as a function of SOC 
and the rate-of-change of SOC.  Specifically, ),( zzM &  is positive for charge ( 0>z& ) and is negative for 
discharge ( 0<z& ).  The ),(),( tzhzzM −&  term in the differential equation states that the rate-of-change of 
hysteresis voltage is proportional to the distance away from the major hysteresis loop, leading to a kind of 
exponential decay of voltage to the major loop.  The term in front of this has a positive constant γ , which 
tunes the rate of decay, and )sgn(z& , which forces the equation to be stable for both charge and discharge. 

In order to fit the differential equation for ),( tzh  into our model, we must manipulate it to be a 
differential equation in time, not in SOC.  We accomplish this by multiplying both sides of the equation 
by dtdz / . 

 ( ) .),(),()sgn(),(
dt
dztzhzzMz

dt
dz

dz
tzdh

−= &&γ  (15) 

Note that Ctitidtdz /)())((/ η−= , and that zzz &&& =)sgn( .  Thus, 
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Figure 4:  Cell voltage tracking using the 
self-correcting model of (12)–(13).  Solid 
red line is true cell voltage; dashed blue line 
is voltage predicted by cell model.  Cell tests 
were pulsed current at ±1C, ±2C and ±4C 
rates, punctuated with rest periods. 
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This may be converted into a difference equation for our discrete-time application using standard 
techniques (assuming that )(ti  and ),( zzM &  are constant over the sample period): 
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Note that this is a linear-time-varying system as the factors multiplying the state and input change with ki  
and hence with time.  The output equation of the enhanced self-correcting model is changed to be: 

 [ ] .)(OCV kk
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4.  Cell Testing and Model Fitting Results 

In order to compare the abilities of the proposed models to capture a cell’s dynamics, we gathered data 
from some prototype LiPB cells.  We used a Tenny thermal chamber set at 25°C and an Arbin cell cycler.  
In all cases, the cells were fully charged before the tests began.  Pulsed discharge cycles punctuated with 
rest intervals were followed by pulsed charge cycles, again with rest periods.  Data points (including 
voltage, current, Ah discharged, and Ah charged) were collected once per second. 

The data was used to identify parameters of the three cell models—one set of parameters was fit for each 
test.  Then, the models were used to predict terminal voltage for the tests.  Figures 2–5 show a comparison 
between model predicted terminal voltage and actual measured terminal voltage for three representative 
tests: pulsed ±1C rates, pulsed ±2C rates and pulsed ±4C rates.  In all plots, the solid red line is the true 
cell voltage and the dashed blue line is the model’s prediction. 
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Figure 5:  Cell voltage tracking using the 
enhanced self-correcting model of (12)–
(13), (17)–18).  Solid red line is true cell 
voltage; dashed blue line is voltage 
predicted by cell model.  Cell tests were 
pulsed current at ±1C, ±2C and ±4C rates, 
punctuated with rest periods. 
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Table 1 lists the root-mean-square (RMS) error between the true cell output and the model output.  Small 
RMS errors are desirable.  The “combined” model from reference [1] is used as a baseline.  We see that 
the “simple” model of (10) gives very similar performance (about 1% worse, on average) but is easier to 
implement due to the removal of the log functions and parameters K0…K4.  The self-correcting model is 
far better than the “combined” model (about 69% better, on average), and  the enhanced self-correcting 
model better yet (about 18% better than the self-correcting model, on average). 
 

Table 1:  Comparison of four different cell models. 

An extended Kalman filter was then run (method from [2]), using the enhanced self-correcting model, to 
evaluate SOC estimation ability.  Figure 7 shows the SOC tracking error, (true SOC minus estimated 
SOC), where the “true” SOC is computed using the Ah dis/charged reported by the Arbin.  The same 
three representative cell tests are used: pulsed ±1C, ±2C, and ±4C rates.  In all plots, solid blue line is the 
SOC error, and the solid green lines delineate the confidence region of the estimate.  Plots are given for 
the case when the Kalman filter is initialized with the true initial SOC (left column) and when the filter is 
initialized with an incorrect value (right column).  Inset plots in the right column show SOC error and 
bounds for the first minute to demonstrate convergence of the Kalman estimator.  For reference, the true 
SOC for the ±1C test is plotted in Figure 8. 

We see that SOC is very accurately estimated both when the initial SOC state is accurate and when it is 
not.  The error bounds are accurate in both cases.  In the case where the initial SOC estimate was 
incorrect, the Kalman filter converged to within a small neighborhood of the truth in approximately 15 
seconds of real time.  At some points, the filter wanders slightly away from the true SOC, but then returns 
due to the self-correcting nature of the model used.  Of course, comparable techniques such as Coulomb 
counting run open-loop, and would never converge to the true value if incorrectly initialized, or if 
parameters such as cell capacity are not known exactly.  Inelegant and problematic ad hoc recalibration 
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 Figure 6:  Discharge and charge curves illustrating hysteresis. 

 RMS modeling error (mV) for each cell test 
 ±1C Test ±2C Test ±4C Test 
Combined model from [1] 19.5 20.2 27.3 
Simple model from (10) 20.4 20.8 26.0 
Self-correcting model 8.7 6.4 4.8 
Enhanced self-correcting model 6.3 5.0 4.6 
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techniques and correction factors are often used to tune the estimate—these are not needed with the 
Kalman method. 

The estimation results obtained here using the enhanced self-correcting model are superior to those 
experienced using the RBF model in [2], and at a fraction of the complexity.  In an embedded 
implementation, the EKF code that uses the enhanced self-correcting model runs approximately 50 times 
faster than similar code using the RBF model.  The enhanced self-correcting model also has the advantage 
that its parameters correspond to physical phenomena such as internal resistance, hysteresis and relaxation 
time constants, so is more readily understood.  Furthermore, we have found it to be much more robust. 
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 Figure 7: Kalman-filter tracking of SOC—using the enhanced self-correcting model—
for correct initial estimate and incorrect initial estimate. 
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5.  Conclusions 

This paper has focused on several mathematical state-space structures for modeling LiPB HEV cell 
dynamics for the purpose of SOC estimation via Kalman filtering.  These models have evolved from 
those presented in [1–2], and include effects due to: open-circuit voltage, cell relaxation, cell internal 
resistance, and hysteresis.  When used with an extended Kalman filter to estimate SOC, they perform 
better, are less complex, and are more robust.  
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 Figure 8:  True SOC for ±1C test.  The ±2C and ±4C tests are similar. 


