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Abstract 

This paper reports some results relating to dynamic cell modeling for the underlying purpose of state-
of-charge (SOC) estimation in a hybrid-electric-vehicle (HEV) application.  The cells in question are 
Lithium Ion Polymer based, jointly developed by LG Chem Ltd. (Daejeon, Korea) and Compact 
Power Inc. (Colorado, USA), have a nominal capacity of about 8Ah, and are optimized for power-
needy applications. 
 
The HEV application is a very harsh environment, with rate requirements up to about ±25C and very 
dynamic rate profiles.  This is in contrast to relatively benign portable-electronic applications with 
constant power output and fractional C rates.  Methods for estimating SOC that work well in portable-
electronic devices may not work well in the HEV application.  If precise SOC estimation is required 
by the HEV, then a very accurate cell model is necessary. 
 
The SOC estimation method we use is based on a Kalman-filtering method, and is described in a 
companion paper to be presented at this conference [1].  A requirement that this approach imposes on 
the cell model is that SOC be a state in the model state vector.   
 
Several different cell models are presented.  The simplest one uses “Coulomb counting” as the state 
equation, and Shepherd’s rule as the output equation.  This model does not predict relaxation 
dynamics of the cell.  An enhanced model adds filter states to take into account relaxation and other 
dynamics in closed-circuit cell voltage, and works better.  A method based on nonlinear autoregressive 
filtering and dynamic radial basis function networks produces the best results overall. 
 
Results of lab tests on physical cells, compared with model prediction, are presented.  The best results 
obtained to date model the cell so precisely that the RMS estimation error is less than the quantization 
noise floor expected in our battery-management-system design.  More importantly, the model allows 
very precise SOC estimation, therefore allowing the vehicle controller to confidently use the battery 
pack’s full operating range without fear of over- or under-charging cells.  Copyright© 2002 EVS19 
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1.  Introduction 
This paper describes some methods to model the electrical input-output behavior of Lithium Ion 
Polymer Battery (LiPB) cells.  The cells are treated as nonlinear dynamic systems, represented in a 
discrete-time state-space form.  Specifically, we assume the form 
 xk+1  = f (xk, uk) + wk (1) 

 yk  = g(xk, uk) + vk, (2) 

where xk is the system state vector at discrete-time index k, uk is the measured exogenous system input 
at time k (which may include measurements of battery-pack current, temperature and so forth) and wk 
is unmeasured “process noise” affecting the system state (and also models the inaccuracy of the cell 



 

model, to some extent). The system output is yk and vk is the measurement noise that usually models 
noise in sensors.  In the equations, f (  ) and g(  ) are (possibly nonlinear) functions, specified by the 
particular cell model used. 
 
To be more specific, the system input vector uk typically contains the instantaneous cell current ik.  It 
may also contain the cell temperature Tk, an estimate of the cell’s capacity C, and/or an estimate of the 
cell’s internal resistance Rk, for example.  The system output is typically a scalar but may be vector 
valued as well.  Here we consider the output to be the cell’s loaded terminal voltage (not at-rest OCV).  
The system’s state vector xk in some way represents in summary form the total effect of all past input 
to the system so that the present output may be predicted solely as a function of the state and present 
input.  Values of past inputs are not required.  Our method constrains the state vector to include SOC 
as one component, as described in Section 3. 
 
Many cell models have been proposed in the literature for many purposes.  Section 2 outlines a few of 
these.  The specific application we have in mind is to model cell dynamics for the purpose of state-of-
charge estimation in a hybrid electric vehicle (HEV) battery pack.  The HEV application is a very 
harsh environment with rate requirements up to about ±25C, very dynamic rate profiles, and operating 
temperatures between –30ºC and 50ºC.  This is in contrast to relatively benign portable-electronic 
applications with constant power output and fractional C rates.  Methods for cell modeling and SOC 
estimation that work well in portable electronic devices often fail in the HEV application.  If precise 
SOC estimation is required by the HEV, then a very accurate cell model is necessary. 
 
The cells modeled in this paper are Lithium-Ion Polymer based, jointly developed by LG Chem, Ltd. 
(Daejeon, Korea) and Compact Power Inc. (Colorado, USA), have a nominal capacity of about 8 Ah, 
and are optimized for power-needy applications.  The approach presented in this paper very accurately 
models the dynamics of these cells.  The method is also very general, and we expect it to work well in 
many other battery systems with different chemistries and applications. 
 
This paper is organized as follows: First, a brief literature review of SOC estimation methods with 
companion cell modeling approaches is given.  Secondly, we explain how our approach differs with 
the simple requirement that SOC be an element of the system state, and the advantages that accrue 
from this choice.  Thirdly, some candidate cell model structures are proposed, along with methods for 
determining model parameters.  The testing equipment, cells and regimen for cell modeling are 
described.  Finally, the results are evaluated and conclusions made.  

2.  Some Alternate Methods for Cell Modeling and SOC Estimation 
We proceed by examining the literature to see if present methods meet our needs.  Recall that our 
application is to model cell dynamics for the purpose of SOC estimation in an HEV battery pack.  We 
find that many papers on cell modeling do not directly consider estimating SOC, and that many papers 
on estimating SOC include some description of cell modeling.  Therefore, many of the references cited 
are SOC estimation papers.  An excellent summary of all of these methods, in greater detail than can 
be presented here, may be found in reference [2]. 
 
For the application in mind, the cell model must be accurate for all operating conditions.  These 
include: very high rates (many papers consider rates up to about ±1C for portable electronic 
applications; we need to consider rates up to about ±25C), temperature variation in the automotive 
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range of –30ºC to 50ºC, very dynamic rates (unlike the more benign portable electronic and battery 
electric vehicle application).  Charging (regen) must be accounted for in the method. 
 
We also require non-invasive methods using only readily available signals.  This requirement is 
imposed by the HEV environment where the battery management system (BMS) has no direct control 
over current and voltage experienced by the battery pack—this is in the domain of the vehicle 
controller and inverter.  This requirement implies that we must rely on such measurements as 
instantaneous cell terminal voltage, cell current and cell external temperature. 
 
Our cell chemistry also limits the range of approaches we might consider.  Techniques specific to lead-
acid chemistries, for example, are not appropriate for LiPB cells. 

2.1.  Laboratory and Chemistry-Dependent Methods 

Several methods simply cannot be used in our application.  (1) A laboratory method for determining 
SOC is to completely discharge a cell to determine its present remaining capacity.  This is impossible 
and counter-productive in the HEV application.  (2) Chemistry-dependent methods for lead-acid 
batteries, such as Coup de Fouet measurement, or measurement of electrolyte physical properties, are 
all inappropriate (as our application uses LiPB cells). (3) Open-circuit voltage measurements: If the 
cell is allowed to rest for a long period, its terminal voltage decays to OCV, and OCV may be used to 
infer SOC (via a lookup table, for example).  However, long periods (sometimes hours) of battery 
inactivity must occur before the terminal voltage approaches OCV.  This method is impractical for 
dynamic SOC estimation. 

2.2.  Electro-chemical Modeling 

One approach to modeling cell electrical dynamics is to very carefully consider, at the chemical 
reaction level, the various processes that occur within the cell.  Some inputs to this modeling process 
include knowledge of the reaction occurring at the anode and cathode, and understanding of the 
electrolyte ion transfer process.  Very accurate terminal voltage prediction may be achieved by these 
models (see reference [3], for example).  However, there is no evident way to extract SOC from the 
model, and it would be difficult (if possible) to measure the many required physical parameters on a 
cell-by-cell basis in a high-volume consumer product.  We have not pursued this approach. 

2.3.  Impedance Spectroscopy 

Another broad category of cell modeling involves measuring cell impedances over a wide range of a.c. 
frequencies [4–8].  Typically, an equivalent circuit model is made of the cell using resistors, 
capacitors, inductors, and/or complex impedances.  Values of the model parameters are found by least 
squares fitting to measured impedance values.  SOC is generally an input to the model as cell 
impedance is a function of SOC.  Therefore, SOC may be indirectly inferred by measuring cell 
impedance and correlating them with known impedances at various SOC levels. 
 
We must also discount this method for our application, as we have no direct method to inject signals 
into cells to measure impedances.  We rely on the vehicle to generate and dissipate all energy flowing 
through the battery pack.  The impedances might be generated using a fast Fourier transform (FFT) 
approach and available measurements as Z(ejω)=E(ejω)/I(ejω), but again we would need to guarantee 
that i(t) was “persistently exciting” and that I(ejω) had no zero values.  This guarantee would be 
violated, for example, if the battery pack were at rest for some period, which is a frequent event.  
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Depending on the block length of the FFT, the method could also impose an unacceptable time delay 
in measuring impedance and hence SOC. 

2.4.  Circuit Models 

A number of papers present equivalent circuit models of cells [9–12].  Typically, a high-valued 
capacitor is used to represent the open-circuit voltage (OCV).  The remainder of the circuit models the 
cell’s internal resistance and more dynamic effects such as terminal voltage relaxation.  From the OCV 
estimate, SOC may be inferred via table lookup. 
 
Both linear- and nonlinear-circuit models may be used.  We have found that linear circuit models do 
not work as well as we would like. 

2.5.  Coulomb Counting 

The final method discussed in the literature involves SOC estimation directly via Coulomb counting.  
This may be done “open-loop”, which is often very imprecise due to sensor error, or “closed loop” 
which is more accurate.  The feedback mechanism may be empirically designed [13] or use a more 
theoretically justified approach such as a Kalman Filtering method [14–15] to generate the feedback.  
All Kalman-filtering based methods in the literature (with which we are familiar) use a circuit model 
of the cell with capacitor voltages representing OCV and relaxation effects.  OCV may be estimated 
and SOC inferred from OCV. 
 
Our approach is also based on the Kalman filtering method, but the fundamental aspect of our model 
that sets it apart from those reported in the literature is that SOC is directly a state of the system.  The 
large benefit of this approach is that the Kalman filter directly gives a dynamic estimate of the SOC 
and its uncertainty (this is discussed in greater detail in the companion paper [1]).  That is, instead of 
reporting the SOC to the vehicle controller (at some point in time) to be “about 55%”, the algorithm is 
able to report that the SOC is 55%±7%, for example.  This allows the vehicle controller to confidently 
use the battery pack’s full operating range without fear of over- or under-charging cells. 

3.  Model Structures 
In order to use the Kalman methods we propose to estimate SOC, the cell model must be represented 
in discrete-time state-space form.  Specifically, we assume the form of equations (1) and (2).  The 
difference between the models, then, depends on the definitions of xk, uk, f (  ) and g(  ). 
 
We also require that SOC is a member of the state vector.  To be complete, we give a list of definitions 
culminating in a careful definition of SOC. 
 
Definition: The cell high operational voltage limit is called vh.  Here, we may use vh =4.2V. 
Definition: The cell low operational voltage limit is called vl.  Here, we may use vl =3.0V. 
Definition: A cell is fully charged when its voltage reaches v=vh after being charged at infinitesimal 

current levels.  
Definition: A cell is fully discharged when its voltage reaches v=vl after being drained at infinitesimal 

current levels. 
Definition: The capacity of a cell is the maximum number of Ampere-hours that can be drawn from 

the cell before it is fully discharged, at room temperature (25oC), starting with the cell 
fully charged. 
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Definition: The nominal capacity of the cell is the number of Ampere-hours that can be drawn from 
the cell at room temperature at the C/40 rate, starting with the cell fully charged. 

Definition: The SOC of the cell is the ratio of the remaining capacity to the nominal capacity of the 
cell, where the remaining capacity is the number of amp-hours that can be drawn from the 
cell at room temperature at the C/40 rate. 

 
With these definitions in place, we can then investigate some mathematical relations involving SOC.  
Particularly,  

 ,)())(()0(SOC)(SOC
0

τττη d
C

iit
t

∫−=  (3) 

where C is the nominal capacity of the cell, i(t) is the cell current at time t, and η(i(t)) is the Coulombic 
efficiency of the cell.  (Here, we use η(i(t))=1 for discharge and η(i(t))=0.995 for charge).  A discrete-
time approximate recurrence may then be written as 
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where ∆t is the sampling period (in hours).  Equation (4) is the basis for including SOC in the state 
vector of the cell model as it is in state equation format already, with SOC as the state and ik as the 
input.  Our cell models will then be differentiated by the additional components in the state vector and 
the functional form of f(  ) and g(  ). 

3.1.  Models with a Single State 

We will first investigate models with a single state; i.e., SOC.  These models share a common process 
equation (4).  The difference between them is then the output equation.  Several different forms are 
suggested in reference [16]. 
 
Shepherd model: yk = 4.2 – R ik  – Ki  / SOCk (5) 
Unnewehr universal model: yk = 4.2 – R ik  – Ki SOCk (6) 
Nernst model: yk = 4.2 – R ik + K1 ln(SOCk) (7) 
Modified Nernst model: yk = 4.2 – R ik + K2 ln(SOCk)+K3 ln(1–SOCk) (8) 
 
In these models, yk is the cell terminal voltage, R is the cell internal resistance (different values may be 
used for charge/discharge and at different SOC levels if desired), Ki is the polarization resistance and 
K1, K2, and K3 are constants chosen to make the model fit the data well.  The “modified Nernst” model 
of (8) reflects an additional term that we added to the Nernst model to cause it to fit our data better.  
All of the terms of (5) through (8) may be collected to make a “combined model” that performs better 
than any of the individual models alone. 
 
Combined model: yk = K0 – R ik – K1/SOCk – K2 SOCk+ K3 ln(SOCk)+K4 ln(1–SOCk) (9) 
 
The unknown quantities in (9) may are estimated using a system identification procedure.  This model 
has the advantage of being “linear in the parameters”; that is, the unknowns occur linearly in the 
output equation.  A simple way to find the parameters is then as follows: We first form the vector 

 and the matrix H . The rows of H are (transposes of) 
, where i

T
NyyyY ],,[ 21 K=

jjj iih SOC/1,,,1[= −+

TT
N

TT hhh ],,[ 21 K=
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j )]SOC1ln(), −jjj SOCln(,SOC, j
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– is equal to ij 

if  ij < 0, else ij
+ and ij

– are zero.  Then, 
 Y = Hθ, 
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where θ = [K0, R+, R–, K1, K2, K3, K4]T is the vector of unknown parameters.  The least-squares solution 
for θ  is   
 θ = (HTH) –1HTY. 
This may be evaluated in Matlab, for example, as theta=H\Y; 

3.2.  Models with Multiple States to Track Relaxation 

The combined model of (9) may be very quickly identified and implemented.  Its serious limitation is 
that it omits any description of cell relaxation.  Since the cell model must accurately predict its 
behavior in a dynamic HEV environment, we find it is essential to include relaxation effects. 
 
In a state-variable model, dynamics are described by the state equation (1).  Therefore, to include 
relaxation effects, we must augment the state vector with additional filter states.  We choose to 
implement filtered versions of SOC and the input current.  The resulting model is then: 
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where Ik
mod = η(ik) |ik|n ∆t/Cp, n is the Peukert exponent and Cp is the Peukert capacity.  The first state 

of xk (that is, xk,1) is SOC, as before.  The output yk is terminal voltage, as before.  The parameters of 
the model are found by system identification using measured cell data.  We found that the model was 
able to predict cell behavior best when different sets of parameters were used for different levels of 
input current ik. 
 
We will use a Kalman filter to estimate the state of a dynamic system; e.g., to estimate the cell SOC.1   
We may also use a Kalman filter to perform system identification.  To do so, consider the weights 
(parameters) of the cell model to be the state of some “true” dynamic system:  
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Here, Wk is the “truth/optimum” weight vector at time k and has as components the weights w1 through 
w12.  The optimum weight vector is constant, explaining the dynamics in the top line.  The “output” of 
the optimum weight dynamics is the desired response, which is equal to the cell output plus the 
estimation error.  We can create an extended Kalman filter to iteratively estimate the state (weight 
vector) of the cell model:  
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Here,  is the approximate conditional error covariance matrix, initialized to a diagonal matrix with 
small values, , and C  

kP
1≤kR ./ dWdyk

T
k =

                                                 
1 This is covered in detail in reference [1].  The system identification procedure may also be best understood by 
consulting this reference for details on Kalman filtering.  See also reference [17]. 
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To compute dy  we first note that y ,  and use the 
chain rule for total differentials.  
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In the second line,  
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and is a previously computed and stored version of dx .  All terms are accounted for, 
and the algorithm is complete.   

dWdxk /1− dWk /

3.3.  Radial Basis Function Model 

Adding linear filter states to the model does improve its ability to predict a cell’s behavior.  However, 
as the LiPB cells themselves are nonlinear systems, we can improve even further by considering a 
fully nonlinear dynamic cell model.  For this purpose, we will use radial-basis-function (RBF) 
networks and a black-box system identification procedure.  
 
An RBF network makes a local approximation of the function it models.  It computes its output as a 
weighted sum of (hyper) Gaussian shapes.  Specifically, it computes the function 
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where N is the number of bases, wj is the weight connecting the jth basis function to the output, σj is 
the “standard deviation” or width parameter of the jth basis function, xk is the vector input to the 
network, and tj is the center of the jth basis function.  Here, uk includes the states of the system: e.g., 

 as well as the cell current iT
kkk yx ]SOC,[ 1−= k. 
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A cartoon illustrating how RBFs approximate some smooth function is drawn in Fig. 1.  The red line is 
the function to be approximated.  The two blue Gaussian shapes with different centers, widths and 
heights sum together to closely approximate the red line.  The same idea applies in higher dimensions.  
When training an RBF, the goal is to find the correct set of centers, widths and output scales to 
approximate the function of interest.   

 

 
Figure 1: Cartoon illustrating how the function drawn as a red line may be approx-
imated by the sum of two Gaussian shapes drawn as blue lines.  

 
The parameters of a RBF network may be identified from data using a Kalman filter in the same way 
as described in Section 3.2.  The details will not be discussed here. 

4.  Cell Testing and Model Fitting Results 
In order to compare the abilities of the proposed models to capture a cell’s dynamics, we gathered data 
from some prototype LiPB cells.  We used a Tenny thermal chamber set at 25°C and an Arbin cell 
cycler.  In all cases, the cells were fully charged before the tests began.  Pulsed discharge cycles 
punctuated with rest intervals were followed by pulsed charge cycles, again with rest periods.  Data 
points (including voltage, current Ah discharged and Ah charged) were collected once per second. 
 
The data was used to identify parameters of the three cell models.  Then, the models were used to 
predict terminal voltage for the tests.  Figures 2–4 show a comparison between model predicted 
terminal voltage and actual measured terminal voltage for three representative tests: pulsed ±1C rates, 
pulsed ±2C rates and pulsed ±4C rates.  In all plots, the red line is the true cell voltage and the blue 
line is the model’s prediction. 
 
In Figure 2 we see a comparison between the measured data and the output of the “combined model”.  
Because this model has no filter states, relaxation effects are missing in the model prediction. 
 
Figure 3 shows results from the “filter state” model.  It does a much better job of capturing the 
relaxation dynamics, but is still noticeably flawed due to its nearly linear nature. 
 
Figure 4 shows results from the “radial-basis-function model”.  The model output is nearly 
indistinguishable from the cell output.  This model has learned the dynamics well.  A 100-RBF 
network was used to show this result.  The RMS estimation error was about 2mV, which is less than 
the quantization noise floor expected in our BMS implementation.  Figure 5 shows a plot of model 
RMS estimation error versus the number of RBF kernels used.  We see that this method allows 
arbitrary precision by increasing the number of RBFs until the desired accuracy goal is met. 
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Figure 2: Cell voltage tracking using the 
single-state model.  Red line is true cell 
voltage; blue line is voltage predicted by cell 
model.  Cell tests were pulsed current at 
±1C, ±2C and  ±4C rates, punctuated with 
rest periods. 
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Figure 3: Cell voltage tracking using the 
filter-state model.  Red line is true cell 
voltage; blue line is voltage predicted by cell 
model.  Cell tests were pulsed current at 
±1C, ±2C and  ±4C rates, punctuated with 
rest periods. 
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Figure 4: Cell voltage tracking using the 
radial-basis-function network model.  Red 
line is true cell voltage; blue line is voltage 
predicted by cell model.  Cell tests were 
pulsed current at ±1C, ±2C and  ±4C rates, 
punctuated with rest periods. 
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Figure 5: RMS prediction/modeling error using RBF networks with different numbers 
of basis functions (kernels). 

 
Finally, Figure 6 shows results of a much more difficult modeling problem.  Rather than simple pulsed 
charge/discharge cycles, it shows cell test results following a UDDS drive cycle, repeated a number of 
times over the SOC range of 0 to 1.  An RBF network of the same size was used to identify this signal. 
 

 10 



 

Note that space does not permit lengthy discussion of model temperature dependence.  Preliminary 
work indicates that temperature may be included as another input to the RBF input vector for accurate 
modeling over the required temperature range. 
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Figure 6: Tracking cell voltage in a very dynamic HEV test using the RBF model with 
100 basis kernels. 

5.  Conclusions 
This paper has proposed three mathematical state-space structures for the purpose of modeling LiPB 
HEV cell dynamics for the eventual purpose of SOC estimation via Kalman filtering.  The single-state 
model is very simple, but performs the poorest.  Adding filter states to the model aids performance, at 
some cost in complexity.  The final structure, based on radial-basis-function networks, allows scalable 
complexity to model the dynamics as well as desired.  It performed best of all.  In addition, the 
companion paper [1] on SOC estimation shows that “the better the model, the better the SOC 
estimation”.  For this reason, the RBF model appears the best of those tested. 
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