
EFFICIENT LINEAR MIMO ADAPTIVE INVERSE CONTROL

Gregory L. Plett 1

University of Colorado at Colorado Springs,
Department of Electrical and Computer Engineering

1420 Austin Bluffs Parkway, P.O. Box 7150, Colorado Springs, CO
80933–7150 USA, glp@eas.uccs.edu

Abstract: Adaptive inverse control is an automatic control-system design method which
“learns” over time how to control a particular dynamic system. This simple controller design
approach can achieve very precise control of minimum- and nonminimum-phase systems,
even with poor a priori knowledge of the plant dynamics. A problem with adaptive inverse
control in its current state is that the learning algorithms for MIMO and nonlinear systems
are very slow. This paper addresses some results concerning a new way to perform adaptive
inverse control of linear MIMO systems which learns very quickly. An example is presented
to demonstrate the dramatic speedup. Copyright c

�
2001 IFAC

Keywords: Adaptive control, Disturbance rejection, Efficient algorithms, Linear control
systems, MIMO, Recursive least squares, Stochastic control, Wiener filters

1. INTRODUCTION

Adaptive inverse control is an automatic control-
system design method which learns how to control a
specific plant (Plett, n.d.; Plett, 1998; Widrow et al.,
1998; Widrow and Plett, 1997; Widrow and Walach,
1996; Widrow and Plett, 1996a; Widrow and Plett,
1996b; Widrow and Plett, 1996c). Adaptive filtering
methods are used throughout. Invisible to the user, a
three-part process is used internally. First, an adaptive
plant model P̂ learns the dynamics of the plant. Sec-
ondly, an adaptive feedforward controller C learns to
control the dynamics of the plant. Thirdly, an adaptive
feedback disturbance canceler X learns to cancel dis-
turbances which affect the plant. These processes may
proceed concurrently. A block diagram of an adaptive
inverse control system is shown in Fig. 1.

Methods are known to quickly adapt controllers for
linear SISO plants (Widrow and Walach, 1996), but
known methods for adapting controllers for linear
MIMO and nonlinear plants learn very slowly (Plett,
n.d.; Plett, 1998; Widrow and Walach, 1996). This pa-

1 Partially supported by a William Grigsby Sencenbaugh grant.

PSfrag replacements

Plant
PC

CCOPY

P̂

P̂COPY

P̂REV

X

XCOPY

M
MCOPY

S
ŜP

ŜPCOPY

Ŝ
E

ECOPY

F
FCOPY

zI

z−1I

Dist. wk

Dist. wk

ŵk

ŵk

v̂k
Sensor

Noise, vk

rk

uk

uk

ũk

ũk

ûk

ũk

yk

yk

yk

ŷk

ŷk

y̌k

ŷk

ỹk

d̃k

dk

e()

k

e()

k

ẽ(sys)
k

ε̃k

ε̃k
rk−1 P̂

Temporal
Delay

Fig. 1. Adaptive inverse control system block diagram.

per presents some results regarding a training method
for linear MIMO adaptive inverse control that learns
about as quickly as methods for linear SISO control.

2. ADAPTIVE DIGITAL FILTERING

Adaptive inverse control relies on adaptive digital fil-
tering methods. Adaptive filters have an input, an out-
put, and a “special input” called the desired response.
The desired response dk specifies the output we wish
the filter to have. It is used to calculate an error signal
ek , which in turn is used to modify the internal param-
eters of the filter in such a way that the filter “learns” to

perform a certain function. Often, the trick to applying
adaptive filtering to a specific application is finding a
way to generate an appropriate dk signal.

For the sake of the present discussion we limit our-
selves to finite impulse response (FIR) filters. The
filter output is computed as a weighted sum of its
current and N previous inputs yk = WXk , where the
column-vector X k = [xT

k , xT
k−1 . . . x T

k−N]T and W is
the weight matrix of the filter.

Linear SISO filters have a single input and a single
output at each time instant; for W to represent a SISO
system, xk and yk must be scalars. W is then a single
row, and its components are the impulse response of
the filter. Linear MIMO filters have (possibly) many
inputs and outputs at each time instant so x k and yk

are (column) vector signals. W then has many rows,
and the individual impulse responses are interleaved
in each row.

The weights in W may be adapted in a variety of ways
in order that the output of the filter learns to closely
match the desired output. For example, the weights
may be updated by a gradient-descent optimization
procedure such as 1W = 2µ(dk − yk)X T

k , where µ

is a small positive learning constant. This rule, com-
monly known as the matrix-LMS algorithm is well
described in several textbooks (Haykin, 1996; Widrow
and Stearns, 1985). Other, more sophisticated, algo-
rithms, such as matrix-RLS (see the algorithm in
Alg. 1) usually converge more quickly, and are very
popular. For a good overview, see Glentis et al. (1999).

3. CONTROLLING LINEAR SISO PLANTS

We now consider adapting the feedforward controller
C . (We shall restrict our development to apply only
to stable plants. If the plant of interest is unstable,
conventional feedback should be applied to stabilize it.
Then the combination of the plant and its feedback sta-
bilizer can be regarded as an equivalent stable plant.)
The goal is to make the dynamics of the controlled
system PC approximate the fixed filter M as closely as
possible, where M is a user-specified reference model.
The input reference signal rk is filtered through M to
create a desired response dk for the plant output. The
measured plant output is compared with the desired
plant output to create a system error signal e (�����)

k =

dk − yk . We wish to adapt C to minimize the mean-
squared system error.

We note that if the plant is minimum-phase, that is,
has all of its poles and zeros inside the unit circle
in the z-plane, then the inverse will be stable with
all of its poles inside the unit circle. If the plant is
nonminimum-phase, then some of the poles of the
inverse will be outside the unit circle. According to the
theory of two-sided z-transforms, the inverse will then
either be unstable or noncausal. Since minimizing sys-
tem error will not lead to an unstable solution—which

Algorithm 1 Matrix-RLS algorithm.

π(k) = X (k)T 8−1
xx (k − 1)

r(k) =
1

λ + π(k)X (k)

K (k) = r(k)π(k)

ζ(k) = d(k) − W(k − 1)X (k)

W(k) = W(k − 1) + ζ(k)K (k)

8−1
xx (k) =

1

λ
tri

{
8−1

xx (k − 1) − π(k)T K (k)

}
,

where the tri{} operator takes the upper or lower triangular part of

a matrix and replicates it in the lower or upper part to preserve

symmetry. λ is a forgetting constant, and is set slightly less than

1. X (k) is the tap-delay-line input to the filter at time k , such that

the filter output is W(k)X (k). 8−1
xx (k) is initialized to a diagonal

matrix with large (order of 10,000) entries.

would have unbounded system error—the algorithm
will attempt to match a noncausal solution. This will
result in very poor control unless the reference model
has built-in latency. The longer the latency, the better
we can approximate a delayed version of a noncausal
inverse with a causal controller. A typical design la-
tency is the transport delay of the plant.

3.1 Linear SISO Feedforward Control:

The challenge when attempting to adapt C is in gen-
erating its desired response signal. We notice that the
system desired response is available at the output of
the plant, and not at the output of the adaptive con-
troller. A variety of solutions are known when the
plant is a linear SISO system (Widrow and Walach,
1996). One simple and very effective method takes ad-
vantage of the commutability of transfer functions of
linear SISO systems. That is, P(z)C(z) = C(z)P(z).
The block diagram of Fig. 2(a) may then be used to
adapt the controller. A random signal n k is filtered by
a digital copy 2 of the plant model P̂ (z) and then by
the controller C (z). It is also filtered by the reference
model M(z). Since the output of the reference model
is the desired output of the cascade C(z)P̂(z), it is
used as the desired response signal for C (z). A filter
whose weights are a digital copy of C(z) is used as the
feedforward controller.

This method is unbiased by zero-mean disturbance,
but may be affected by plant modeling errors. More
sophisticated methods are available to adapt con-
trollers and which are not affected by plant model-
ing errors (Widrow and Walach, 1996). If the RLS
algorithm is used to adapt C (z), convergence occurs

2 The weights of the digital copy are identical to the weights
of the adaptive plant model, although the input to both filters is
different and hence the outputs of the two filters are different. Note
that alternative adaptive methods such as MRAC by Åström and
Wittenmark (1995) do not require a digital copy of a plant model.
For a good discussion comparing and contrasting STR/MRAC with
AIC, see Appendix C of Widrow and Walach (1996).

PSfrag replacements
Plant

P
C

CCOPY
P̂

P̂COPY
P̂REV

X
XCOPY

M
MCOPY

S
ŜP

ŜPCOPY
Ŝ
E

ECOPY
F

FCOPY
zI

z−1I
Dist. wk
Dist. wk

ŵk
ŵk
v̂k

Sensor
Noise, vkrkukuk

ũk
ũk
ûk
ũkykykyk
ŷk
ŷk
y̌k
ŷk
ỹk
d̃k
dk

e()

k

e()
k

ẽ(sys)
k

ε̃k
ε̃krk−1 P̂

Temporal
Delay rk

nk
xk

dk

yk
Plant
P(z)

Copy
C(z)

Copy
P̂(z)

M(z)

C(z)

(a)

PSfrag replacements
Plant

P
C

CCOPY
P̂

P̂COPY
P̂REV

X
XCOPY

M
MCOPY

S
ŜP

ŜPCOPY
Ŝ
E

ECOPY
F

FCOPY
zI

z−1I
Dist. wk
Dist. wk

ŵk
ŵk
v̂k

Sensor
Noise, vkrkukuk

ũk
ũk
ûk
ũkykykyk
ŷk
ŷk
y̌k
ŷk
ỹk
d̃k
dk

e()

k
e()

k

ẽ(sys)
k

ε̃k
ε̃krk−1 P̂

Temporal
Delay

rk

nk
xk

dk

yk
Plant
P(z)

Copy
C(z)

Copy
P̂(z)T

M(z)T

C(z)T

(b)

Fig. 2. Adapting a linear controller C (z). (a) For a
SISO linear plant; (b) For a MIMO linear plant.
The plant modeling process has been omitted for
clarity.

within twice as many iterations as there are taps in the
controller filter C (Haykin, 1996).

3.2 Linear SISO Disturbance Canceling

The dynamic response of the system may now be
controlled but plant disturbance, however, is not yet
rejected. This can be accomplished via another special
adaptive filter called the disturbance canceler X . In
order to avoid bias in the adaptive plant model due
to the disturbance, a special architecture must be used
when adapting P̂ and X simultaneously. The solution
is shown in Fig. 3. It can be shown that the plant
model will adapt to the correct solution using this
scheme (Plett, n.d.; Plett, 1998) so long as the distur-
bance is is zero-mean and uncorrelated with u k .

PSfrag replacements

Plant
PC

CCOPY

P̂

P̂COPY

P̂REV

X

XCOPY

M
MCOPY

S
ŜP

ŜPCOPY

Ŝ
E

ECOPY

F
FCOPY

zI

z−1I

Dist. wk

Dist. wk

ŵk

ŵk

v̂k
Sensor

Noise, vk

rk

uk

uk

ũk

ũk

ûk

ũk

yk

yk

yk

ŷk

ŷk

y̌k

ŷk

ỹk

d̃k

dk

e()

k

e()

k

ẽ(sys)
k

ε̃k

ε̃k
rk−1 P̂

Temporal
Delay

Fig. 3. Correct on-line adaptive plant modeling in
conjunction with disturbance canceling for linear
plants. The circuitry for adapting C has been
omitted for clarity.

When considering the linear SISO case, we would
like to adapt the disturbance canceler X such that
z−1P (z)X(z) = −1. This would entirely cancel the
disturbance, but result in a non-causal X . We can

still use this formula to adapt X(z), as shown in
Fig. 4(a), but by the adaptive method, X (z) will adapt
to the optimal causal solution. 3 As when adapting a
controller, we take advantage of the fact that linear
systems commute in order to generate an adaptation
signal for X .

PSfrag replacements
Plant

P
C

CCOPY
P̂

P̂COPY
P̂REV

X
XCOPY

M
MCOPY

S
ŜP

ŜPCOPY
Ŝ
E

ECOPY
F

FCOPY
zI

z−1I
Dist. wk
Dist. wk

ŵk
ŵk
v̂k

Sensor
Noise, vkrkukuk

ũk
ũk
ûk
ũkykykyk
ŷk
ŷk
y̌k
ŷk
ỹk
d̃k
dk

e()

k
e()

k

ẽ(sys)
k

ε̃k
ε̃krk−1 P̂

Temporal
Delay ŵk

dk

Copy
P̂(z)−z−1 X (z)

(a)

PSfrag replacements
Plant

P
C

CCOPY
P̂

P̂COPY
P̂REV

X
XCOPY

M
MCOPY

S
ŜP

ŜPCOPY
Ŝ
E

ECOPY
F

FCOPY
zI

z−1I
Dist. wk
Dist. wk

ŵk
ŵk
v̂k

Sensor
Noise, vkrkukuk

ũk
ũk
ûk
ũkykykyk
ŷk
ŷk
y̌k
ŷk
ỹk
d̃k
dk

e()

k

e()
k

ẽ(sys)
k

ε̃k
ε̃krk−1 P̂

Temporal
Delay ŵk

dk

Copy
P̂(z)T−z−1I X (z)T

(b)

Fig. 4. Architectures for training disturbance canceler
X ; (a) for linear SISO systems; (b) for linear
MIMO systems. The actual disturbance canceler
is a digital copy of X .

4. THE NOVEL APPROACH TO LINEAR MIMO
ADAPTIVE INVERSE CONTROL

4.1 Feedforward Control

While linear SISO systems have transfer functions,
linear MIMO systems have transfer function matri-
ces, denoted for example as [P(z)]. Matrix multi-
plication is not in general commutative; therefore,
[P(z)][C(z)] 6= [C(z)][P(z)] and we can not use the
same simple method as with the SISO system. A num-
ber of ways have been proposed to adapt a controller
for a linear MIMO system (Plett, n.d.; Plett, 1998;
Widrow et al., 1998; Widrow and Plett, 1997; Widrow
and Walach, 1996). These methods tend to make inef-
ficient use of the available data and are slow. Here, we
present a very simple and fast method to adapt a linear
MIMO controller (Plett, 2000). It uses the fact that
[P(z)][C(z)] = [C (z)]T [P(z)]T . The block diagram
in Fig. 2(b) may then be used to adapt the controller.
The entire operation depends on being able to take the
“transpose” of an adaptive filter representing a transfer
function matrix. These filters are actually stored as
impulse-response matrices, and the transpose opera-
tion is simply a re-organization of the components of
the impulse-response matrices. The mechanics of tak-
ing a filter transpose are discussed in the next section.
As with the SISO linear case, convergence using the
RLS algorithm occurs within twice as many iterations
as there are taps in the longest impulse response in the

3 We note that this solution amounts to a predictor which predicts
a future sample of the disturbance, cascaded with a plant inverse.
Since optimal prediction is in general a nonlinear operation, the
ideal disturbance canceler is a nonlinear adaptive filter even if the
plant is linear!

MIMO controller filter C . This is an improvement of
many orders of magnitude when compared with the
other known cited methods.

4.2 Transpose of Transfer Functions

In order to train the controller, notice that we need the
transposed filter [P̂(z)]T . The weight matrix for this
filter is not the same as WT

P̂
. To find the correct weight

matrix for an arbitrary transposed filter [H(z)] T con-
sider first the weight matrix for some arbitrary fil-
ter [H(z)]. For the sake of example we will assume
[H(z)] has three inputs, two outputs and N = 1 so
that the impulse response is two samples long. Then,
the H -matrix has entries as shown in Fig. 5.

PSfrag replacements
Plant

P
C

CCOPY

P̂
P̂COPY

P̂REV

X
XCOPY

M
MCOPY

S
ŜP

ŜPCOPY

Ŝ
E

ECOPY

F
FCOPY

zI
z−1I

Dist. wk

Dist. wk

ŵk

ŵk

v̂k
Sensor

Noise, vk

rk

uk

uk

ũk

ũk

ûk

ũk

yk

yk

yk

ŷk

ŷk

y̌k

ŷk

ỹk

d̃k

dk

e()

k

e()

k

ẽ(sys)
k

ε̃k

ε̃k
rk−1 P̂

Temporal
Delay

[h11]0 [h11]1

[h11]2

[h11]3

[h11]4

[h12]0 [h12]1

[h12]2

[h12]3

[h12]4

[h13]0 [h13]1

[h13]2

[h13]3

[h13]4

[h21]0 [h21]1

[h21]2

[h21]3

[h21]4

[h22]0 [h22]1

[h22]2

[h22]3

[h22]4

[h23]0 [h23]1

[h23]2

[h23]3

[h23]4

Fig. 5. Weight matrix for filter [H (z)].

There are six impulse responses embedded in this
matrix: h11, h12, h13, h21, h22 and h23. When we take
the z-transform and make the transfer-function matrix
for this filter, we get

[H(z)] =

[
H11(z) H12(z) H13(z)
H21(z) H22(z) H23(z)

]

which has transpose

[H(z)]T =

H11(z) H21(z)
H12(z) H22(z)
H13(z) H23(z)

 .

So, the transpose of the weight filter has entries as
shown in Fig. 6. It may be computed in Matlab, for
example, with a sequence of matrix reshape and
permute commands.

PSfrag replacements
Plant

P
C

CCOPY

P̂
P̂COPY

P̂REV

X
XCOPY

M
MCOPY

S
ŜP

ŜPCOPY

Ŝ
E

ECOPY

F
FCOPY

zI
z−1I

Dist. wk

Dist. wk

ŵk

ŵk

v̂k
Sensor

Noise, vk

rk

uk

uk

ũk

ũk

ûk

ũk

yk

yk

yk

ŷk

ŷk

y̌k

ŷk

ỹk

d̃k

dk

e()

k

e()
k

ẽ(sys)
k

ε̃k

ε̃k
rk−1 P̂

Temporal
Delay

[h11]0 [h11]1

[h11]2

[h11]3

[h11]4

[h12]0 [h12]1

[h12]2

[h12]3

[h12]4

[h13]0 [h13]1

[h13]2

[h13]3

[h13]4

[h21]0 [h21]1

[h21]2

[h21]3

[h21]4

[h22]0 [h22]1

[h22]2

[h22]3

[h22]4

[h23]0 [h23]1

[h23]2

[h23]3

[h23]4

Fig. 6. Weight matrix for filter [H (z)]T .

4.3 Wiener Solution for Controller

A property of linear adaptive filtering is that the solu-
tion to which the algorithm converges may be verified
mathematically. This solution is known as the Wiener
solution. There are three cases to consider when com-
puting the Wiener solution for the controller weight
matrix when the plant is linear MIMO: (1) the plant
has more outputs than inputs; (2) the plant has fewer
outputs than inputs; (3) the plant has an equal num-
ber of outputs and inputs. The details of the Wiener
solution are in Plett (2000).

More outputs than inputs: If the plant has more out-
puts than inputs, then P̂(z)T P̂(z) is generally invert-
ible. The controller converges to

C (�����)(z) =
[
P̂(z)T P̂(z)

]−1
P̂(z)T M(z),

which is the pseudo-inverse of P̂(z) in cascade with
the reference model. This is the desired solution.

More inputs than outputs: If the plant has more in-
puts than outputs, then P̂(z)P̂(z)T is generally invert-
ible. One possible solution for C(z) is

C (�����)(z) = P̂(z)T
[
P̂(z)P̂(z)T

]−1
M(z).

This is the minimum-norm solution. Generally, when
there are more inputs than outputs there will be many
solutions to C(z) which all achieve zero error. The
minimum-norm solution is one of these, and uses
the least amount of control effort (in a mean-squared
sense). It is not a guaranteed solution.

Equal number of inputs and outputs: If the plant has
an equal number of inputs and outputs, and if the plant
is invertible, then both solutions become

C (�����)(z) = P̂(z)−1M(z).

We note that all three Wiener solutions are based on
the inverse of the plant model and not on the inverse of
the plant. So, the efficacy of this method is dependent
on an accurate plant model.

4.4 Disturbance Canceling

We can adapt a disturbance canceler for a linear
MIMO system using the same equation as for the
SISO case, and adopting the transpose method used
when adapting C for the MIMO system. The block di-
agram of the adaptation method is shown in Fig. 4(b).

4.5 Speed of Convergence

There are two convergence issues to deal with. First,
convergence of the plant model, and then conver-
gence of the controller/disturbance canceler. The plant
model needs to converge before either the controller or
disturbance canceler can converge. Here we assume
that matrix-RLS is used to adapt the two filters.

According to Haykin, RLS converges in two times
as many iterations as there are taps in the FIR fil-
ter (Haykin, 1996). So, for example, if a matrix-
FIR filter has five taps per sub-filter, convergence is
achieved in about ten iterations. Similarly, conver-
gence of the controller or disturbance canceler occurs
in about twice as many iterations as there are taps
in each filter. However, since the controller- and can-
celer adaptation process is done offline, it can be done

quickly in the background and entire system conver-
gence occurs can occur in about twice as many itera-
tions as there are taps in the plant-model FIR filter.

5. EXAMPLE

Aspects of flight control for a Boeing 747 aircraft
were selected to demonstrate linear, MIMO control.
The dynamics of the airplane have been approximated
by a linear model around an equilibrium point. In the
case at hand, the equilibrium “point” is level flight at
40,000 ft and a nominal forward speed of Mach 0.8
(774 ft/sec). For further detail regarding particulars
of this example, see Plett (1998). Here, three cases
are considered. All simulations consider the system
to have two inputs (rudder angle and aileron angle).
Simulations have one through three outputs (yaw-rate,
roll-rate, bank-angle).

The discrete-time state-space model of the plant has

Ad =

0.8876 −0.3081 0.0415 0.0198
0.2020 0.3973 −0.0046 0.0024

−1.2515 0.5106 0.7617 −0.0139
−0.3313 0.1510 0.4407 0.9976

Bd =

0.4806 −0.0013
−1.5809 0.3887

0.0599 4.8390
0.0390 1.2585

,

with a sampling period of 0.5 ����� . The output matrix
was chosen to be the first one, two, or three rows of

Cd =

0 1 0 0
0 0 0 1
0 0 1 0

 ,

depending on whether the plant had one, two or three
outputs, and Dd = 0. The reference input was filtered
white noise, and disturbance was nonlinearly filtered
white noise, added directly to the state. The reference
model was a unit delay: M(z) = z−1I.

Tracking results for converged controllers (in the ab-
sence of disturbance) are presented in Fig. 7. Tracking
is essentially perfect when there are more plant inputs
than outputs, and is also very good when there are
an equal number of plant inputs and outputs. When
there are more plant outputs than inputs, it becomes
impossible to get perfect tracking in general, and the
controller adapts to find the solution which minimizes
the mean-square output error.

Note: simulations in Plett (1998) considered two-input
two-output control. The controller, trained with the
BPTM method, converged in about 108 iterations.
Learning curves for the present method and the three
simulation cases are presented in Fig. 8. We see con-
vergence in all cases within 200–400 iterations. Train-
ing time, to a similar level of steady-state error, is

0 20 40 60 80 100
−2

−1

0

1

2

3

PSfrag replacements
Plant

P
C

CCOPY
P̂

P̂COPY
P̂REV

X
XCOPY

M
MCOPY

S
ŜP

ŜPCOPY
Ŝ
E

ECOPY
F

FCOPY
zI

z−1I
Dist. wk
Dist. wk

ŵk
ŵk
v̂k

Sensor
Noise, vkrkukuk

ũk
ũk
ûk
ũkykykyk
ŷk
ŷk
y̌k
ŷk
ỹk
d̃k
dk

e()

k

e()
k

ẽ(sys)
k

ε̃k
ε̃krk−1 P̂

Temporal
Delay

Single-output tracking, MSE = 2.44 × 10−7

(a)

0 20 40 60 80 100
−5

0

5

0 20 40 60 80 100
−5

0

5

PSfrag replacements
Plant

P
C

CCOPY
P̂

P̂COPY
P̂REV

X
XCOPY

M
MCOPY

S
ŜP

ŜPCOPY
Ŝ
E

ECOPY
F

FCOPY
zI

z−1I
Dist. wk
Dist. wk

ŵk
ŵk
v̂k

Sensor
Noise, vkrkukuk

ũk
ũk
ûk
ũkykykyk
ŷk
ŷk
y̌k
ŷk
ỹk
d̃k
dk

e()

k
e()

k

ẽ(sys)
k

ε̃k
ε̃krk−1 P̂

Temporal
Delay

Two-output tracking, MSE = 2.25 × 10−3

(b)

0 20 40 60 80 100
−5

0

5

0 20 40 60 80 100
−5

0

5

0 20 40 60 80 100
−5

0

5

PSfrag replacements
Plant

P
C

CCOPY
P̂

P̂COPY
P̂REV

X
XCOPY

M
MCOPY

S
ŜP

ŜPCOPY
Ŝ
E

ECOPY
F

FCOPY
zI

z−1I
Dist. wk
Dist. wk

ŵk
ŵk
v̂k

Sensor
Noise, vkrkukuk

ũk
ũk
ûk
ũkykykyk
ŷk
ŷk
y̌k
ŷk
ỹk
d̃k
dk

e()

k
e()

k

ẽ(sys)
k

ε̃k
ε̃krk−1 P̂

Temporal
Delay

Three-output tracking, MSE = 1.34

(c)

Fig. 7. Tracking performance for three trained con-
trollers. The plant had one through three outputs
in (a) through (c), respectively. The dark line is
the desired plant output; the light line is the actual
plant output.

improved by several orders of magnitude. As a point
of reference, the plant model had 61 taps in each im-
pulse response, and the controller had 71 taps in each
impulse response.

Disturbance canceling was tested for the MIMO sys-
tem, and results are plotted in Fig. 9. The figure shows
the squared-norm of the system error plotted versus
iteration. Disturbance was present at all times, and
the (trained) disturbance canceler was turned “on” at
time 1000. As can be seen, the disturbance canceler
removes essentially all of the disturbance, resulting in
near-perfect tracking even in the presence of distur-
bance.

0 200 400 600 800 1000
−140

−120

−100

−80

−60

−40

−20

0

10
lo

g 10
(|

e k|2)

PSfrag replacements
Plant

P
C

CCOPY
P̂

P̂COPY
P̂REV

X
XCOPY

M
MCOPY

S
ŜP

ŜPCOPY
Ŝ
E

ECOPY
F

FCOPY
zI

z−1I
Dist. wk
Dist. wk

ŵk
ŵk
v̂k

Sensor
Noise, vkrkukuk

ũk
ũk
ûk
ũkykykyk
ŷk
ŷk
y̌k
ŷk
ỹk
d̃k
dk

e()

k

e()
k

ẽ(sys)
k

ε̃k
ε̃krk−1 P̂

Temporal
Delay

Learning curve, one output

(a)

0 200 400 600 800 1000
−60

−40

−20

0

20

40

10
lo

g 10
(|

e k|2)

PSfrag replacements
Plant

P
C

CCOPY
P̂

P̂COPY
P̂REV

X
XCOPY

M
MCOPY

S
ŜP

ŜPCOPY
Ŝ
E

ECOPY
F

FCOPY
zI

z−1I
Dist. wk
Dist. wk

ŵk
ŵk
v̂k

Sensor
Noise, vkrkukuk

ũk
ũk
ûk
ũkykykyk
ŷk
ŷk
y̌k
ŷk
ỹk
d̃k
dk

e()

k
e()

k

ẽ(sys)
k

ε̃k
ε̃krk−1 P̂

Temporal
Delay

Learning curve, two outputs

(b)

0 200 400 600 800 1000
−20

−10

0

10

20

30

40

50

60

10
lo

g 10
(|

e k|2)

PSfrag replacements
Plant

P
C

CCOPY
P̂

P̂COPY
P̂REV

X
XCOPY

M
MCOPY

S
ŜP

ŜPCOPY
Ŝ
E

ECOPY
F

FCOPY
zI

z−1I
Dist. wk
Dist. wk

ŵk
ŵk
v̂k

Sensor
Noise, vkrkukuk

ũk
ũk
ûk
ũkykykyk
ŷk
ŷk
y̌k
ŷk
ỹk
d̃k
dk

e()

k
e()

k

ẽ(sys)
k

ε̃k
ε̃krk−1 P̂

Temporal
Delay

Learning curve, three outputs

(c)

Fig. 8. Learning curves training the three controllers
(in dB). The plant had one through three outputs
in (a) through (c), respectively. The horizontal
axis is the number of training iterations.

6. CONCLUSIONS

A new method is presented in this paper for adapting
the controller and disturbance canceler in an adaptive-
inverse-control system for linear MIMO plants. The
method works very well and is very fast. Simulation
results indicate orders-of-magnitude speed improve-
ment over known methods. The method works for
MIMO systems with equal or unequal numbers of
inputs and outputs.

REFERENCES

Åström, K. J. and B. Wittenmark (1995). Adaptive
Control. second ed.. Addison-Wesley. Reading,
MA.

Glentis, G., K Berberidis and Sergios Theodoridis
(1999). Efficient least squares adaptive algo-

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

PSfrag replacements
Plant

P
C

CCOPY

P̂
P̂COPY

P̂REV

X
XCOPY

M
MCOPY

S
ŜP

ŜPCOPY

Ŝ
E

ECOPY

F
FCOPY

zI
z−1I

Dist. wk

Dist. wk

ŵk

ŵk

v̂k
Sensor

Noise, vk

rk

uk

uk

ũk

ũk

ûk

ũk

yk

yk

yk

ŷk

ŷk

y̌k

ŷk

ỹk

d̃k

dk

e()

k

e()

k

ẽ(sys)
k

ε̃k

ε̃k
rk−1 P̂

Temporal
Delay

System error

Time (s)

A
m

pl
it

ud
e

Sq
ua

re

Fig. 9. Disturbance canceling for MIMO system.

rithms for FIR transversal filtering. IEEE Signal
Processing Magazine 16(4), 13–41.

Haykin, S. (1996). Adaptive Filter Theory. third ed..
Prentice Hall. Upper Saddle River, NJ.

Plett, G. L. (1998). Adaptive Inverse Control of Plants
with Disturbances. PhD thesis. Stanford Univer-
sity. Stanford, CA 94305.

Plett, G. L. (2000). Some results concerning fast linear
MIMO adaptive inverse control. Technical Re-
port EAS ECE 2000 11. ECE Department, Uni-
versity of Colorado at Colorado Springs. P.O.
Box 7150, Colorado Springs, CO 80933–7150.

Plett, G. L. (n.d.). Adaptive inverse control of unmod-
eled stable SISO and MIMO linear systems. In-
ternational Journal of Adaptive Control and Sig-
nal Processing. (in press).

Widrow, B. and E. Walach (1996). Adaptive Inverse
Control. Prentice Hall P T R. Upper Saddle River,
NJ.

Widrow, B. and G. L. Plett (1996a). Adaptive in-
verse control based on linear and nonlinear adap-
tive filtering. In: Proceedings of International
Workshop on Neural Networks for Identification,
Control, Robotics and Signal/Image Processing.
(Venice, Italy: August 1996). pp. 30–38.

Widrow, B. and G. L. Plett (1996b). Adaptive inverse
control based on linear and nonlinear adaptive
filtering. In: Proceedings of the World Congress
on Neural Networks. (San Diego, CA: September
1996). pp. 620–27.

Widrow, B. and G. L. Plett (1996c). ‘Intelligent’ adap-
tive inverse control. In: Proceedings of IFAC.
(San Francisco, CA: July 1996). pp. 104–105.

Widrow, B. and G. L. Plett (1997). Nonlinear adaptive
inverse control. In: Proceedings of the 36th IEEE
Conference on Decision and Control. Vol. 2. (San
Diego, CA: December 1997). pp. 1032–1037.

Widrow, B. and S. D. Stearns (1985). Adaptive Signal
Processing. Prentice-Hall. Englewood Cliffs, NJ.

Widrow, B., G. L. Plett, E. Ferreira and M. Lamego
(1998). Adaptive inverse control based on non-
linear adaptive filtering. In: Proceedings of 5th
IFAC Workshop on Algorithms and Architectures
for Real-Time Control AARTC’98. (Cancun, MX:
April 1998). pp. 247–252. (invited paper).

