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Some Results Concerning Fast Linear MIMO
Adaptive Inverse Control

Gregory L. Plett
Abstract

Adaptive inverse control is an automatic control-system design method which “learns” over time how
to control a dynamic system (“plant”). The technique may be applied to single-input single-output (SISO)
and multi-input multi-output (MIMO) plants. The plant may be linear or nonlinear. This report addresses
preliminary results concerning a new way to perform adaptive inverse control of linear MIMO systems which
learns very quickly.

I. INTRODUCTION

DAPTIVE inverse control is an automatic control-system design method which learns how to control
a specific plant [1–9]. Adaptive filtering methods are used throughout. Invisible to the user, a three-

part process is used internally. First, an adaptive plant model P̂ learns the dynamics of the plant. Secondly,
an adaptive feedforward controller C learns to control the dynamics of the plant. Thirdly, an adaptive
feedback disturbance canceler X learns to cancel disturbances which affect the plant. These processes
may proceed concurrently. A block diagram of an adaptive inverse control system is shown in Fig. 1.

Methods are known to quickly adapt controllers for linear SISO plants [6], but known methods for
adapting controllers for MIMO plants learn very slowly [2, 3, 6]. This report presents preliminary results
regarding a training method for linear MIMO adaptive inverse control that learns about as quickly as
methods for linear SISO control.

II. ADAPTIVE DIGITAL FILTERING

An adaptive filter is illustrated in Figure 2. It has an input, an output, and a “special input” called the
desired response. The desired response dk specifies the output we wish the filter to have. It is used to
calculate an error signal ek , which in turn is used to modify the internal parameters of the filter in such a
way that the filter “learns” to perform a certain function. Often, the trick to applying adaptive filtering to
a specific application is finding a way to generate an appropriate dk signal.

For the sake of the present discussion we limit ourselves to finite impulse response (FIR) filters. The
filter output is computed as a weighted sum of its current and N previous inputs

Plant
PC

CCOPY

P̂

P̂COPY

P̂REV

X

XCOPY

M
MCOPY

S
ŜP
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Fig. 1. Adaptive inverse control system block diagram.
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Fig. 2. Symbolic representation of an adaptive filter.

yk = WXk, (1)

where the column-vector

Xk = [x T
k , x T

k−1 . . . x
T
k−N ]T,

and W is the weight matrix of the filter.
Linear SISO filters have a single input and a single output at each time instant; for (1) to represent a

SISO system, xk and yk must be scalars. W is then a single row, and its components are the impulse
response of the filter. Linear MIMO filters have (possibly) many inputs and outputs at each time instant;
this is also accommodated by (1) if xk and yk are (column) vector signals. W then has many rows, and the
individual impulse responses are interleaved in each row.

The weights in W may be adapted in a variety of ways in order that the output of the filter learns to
closely match the desired output. Adaptation is performed with the aid of the filter’s desired response
input signal dk . At each time instant the filter output yk is compared to this desired response, and the error
is computed to be ek = dk − yk . As the system runs, we wish to modify the weights of the filter in order
to minimize the expected squared error. For example, the weights may be updated by a gradient-descent
optimization procedure such as

1W = 2µek X T
k ,

where µ is a small positive learning constant. This rule, commonly known as the matrix-LMS algorithm,
is well described in several textbooks [10,11]. Other, more sophisticated, algorithms, such as matrix-RLS
(described in Section IV. E on page 7) usually converge more quickly, and are very popular [12].

A nice property of linear filtering is that the optimal solution to which an adaptive process will converge
is mathematically tractable if certain statistical information about the input and desired response is avail-
able. This solution is known as the Wiener solution. The SISO version is fully developed in [6], and the
MIMO version is derived in Appendix A on page 12.

III. LINEAR SISO ADAPTIVE INVERSE CONTROL

We may now consider adapting the feedforward controller C .1 The goal is to make the dynamics of the
controlled system PC approximate the fixed filter M as closely as possible, where M is a user-specified
reference model. The input reference signal rk is filtered through M to create a desired response dk for the
plant output. The measured plant output is compared with the desired plant output to create a system error
signal e(sys)

k = dk − yk . We wish to adapt C to minimize the mean-squared system error.
The reference model M may be designed in a number of ways. Following traditions of control-theory,

we might design M to have a certain step response resembling a second-order system which meets design
1 We shall restrict our development to apply only to stable plants. If the plant of interest is unstable, conventional feedback should be

applied to stabilize it. Then the combination of the plant and its feedback stabilizer can be regarded as an equivalent stable plant.
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ûkykykyk
ŷk
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ŷk
ỹk
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ŷk
y̌k
ŷk
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Fig. 3. Adapting a linear controller C (z). (a) For a SISO linear plant; (b) For a MIMO linear plant. The plant modeling process
has been omitted for clarity.

specifications. However, we can often achieve even better tracking control if we let M be simply a delay
corresponding to the transport delay of the plant. The controller C will adapt to a delayed inverse of the
plant dynamics.

We note that if the plant is minimum-phase, that is, has all of its poles and zeros inside the unit circle
in the z-plane, then the inverse will be stable with all of its poles inside the unit circle. If the plant is
nonminimum-phase, then some of the poles of the inverse will be outside the unit circle. According
to the theory of two-sided z-transforms, the inverse will then either be unstable or noncausal. Since
minimizing system error will not lead to an unstable solution—which would have unbounded system
error—the algorithm will attempt to match a noncausal solution. This will result in very poor control
unless the reference model has built-in latency. The longer the latency, the better we can approximate a
delayed version of a noncausal inverse with a causal controller. A typical design latency is the transport
delay of the plant.

A. Linear SISO Feedforward Control:

The challenge when attempting to adapt C is in generating its desired response signal. We notice that
the system desired response is available at the output of the plant, and not at the output of the adaptive
controller. A variety of solutions are known when the plant is a linear SISO system [6]. One simple and
very effective method takes advantage of the commutability of transfer functions of linear SISO systems.
That is, P(z)C(z) = C (z)P(z). The block diagram of Figure 3(a) may then be used to adapt the controller.
A random signal nk is filtered by a digital copy2 of the plant model P̂ (z) and then by the controller C (z). It
is also filtered by the reference model M(z). Since the output of the reference model is the desired output
of the cascade C (z)P̂(z), it is used as the desired response signal for C(z). A filter whose weights are a
digital copy of C (z) is used as the feedforward controller.

This method is unbiased by zero-mean disturbance, but may be affected by plant modeling errors. More
sophisticated methods are available to adapt controllers and which are not affected by plant modeling
errors [6]. If the RLS algorithm is used to adapt C (z), convergence occurs within twice as many iterations
as there are taps in the controller filter C [10].

2 The weights of the digital copy are identical to the weights of the adaptive plant model, although the input to both filters is different and
hence the outputs of the two filters are different.
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Fig. 4. Correct on-line adaptive plant modeling in conjunction with disturbance canceling for linear plants. The circuitry for
adapting C has been omitted for clarity.
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ûkykykyk
ŷk
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ŷk
ỹk
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ũk
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Fig. 5. Architectures for training disturbance canceler X ; (a) for linear SISO systems; (b) for linear MIMO systems. The actual
disturbance canceler is a digital copy of X .

B. Linear SISO Disturbance Canceling

The dynamic response of the system may now be controlled but plant disturbance, however, is not yet
rejected. This can be accomplished via another special adaptive filter called the disturbance canceler X . In
order to avoid bias in the adaptive plant model due to the disturbance, a special architecture must be used
when adapting P̂ and X simultaneously. The solution is shown in Fig. 4. It can be shown that the plant
model will adapt to the correct solution using this scheme [1,3] so long as the disturbance is is zero-mean
and uncorrelated with uk .

When considering the linear SISO case, we would like to adapt the disturbance canceler X such that
z−1P(z)X(z) = −1. This would entirely cancel the disturbance, but result in a non-causal X . We can still
use this formula to adapt X(z), as shown in Figure 5(a), but by the adaptive method, X(z) will adapt to the
optimal causal solution.3 As when adapting a controller, we take advantage of the fact that linear systems
commute in order to generate an adaptation signal for X .

IV. LINEAR MIMO ADAPTIVE INVERSE CONTROL

A. Feedforward Control

While linear SISO systems have transfer functions, linear MIMO systems have transfer function ma-
trices, denoted for example as [P (z)]. Matrix multiplication is not in general commutative; therefore,

3 We note that this solution amounts to a predictor which predicts a future sample of the disturbance, cascaded with a plant inverse. Since
optimal prediction is in general a nonlinear operation, the ideal disturbance canceler is a nonlinear adaptive filter even if the plant is linear!
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ỹk
d̃k
dk

e(sys)
k

e(mod)
k
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Fig. 6. Weight matrix for filter [H (z)].

[P (z)][C(z)] 6= [C(z)][P (z)] and we can not use the same simple method as with the SISO system. A
number of ways have been proposed to adapt a controller for a linear MIMO system [1–6]. For example,

• The “algebraic method” of reference [6] does not work when the plant has differing numbers of
inputs and outputs. This method is also more cumbersome than the one to be developed.

• The “BPTM” method of references [2, 3] is extremely slow to converge.
• The “filtered-ε” method of reference [6] seems to have numeric difficulties, and often has trouble

converging.
Here, we present a very simple and fast method to adapt a linear MIMO controller. It uses the fact that
[P (z)][C(z)] = [C(z)]T [P(z)]T . The block diagram in Figure 3(b) may then be used to adapt the con-
troller. The entire operation depends on being able to take the “transpose” of an adaptive filter representing
a transfer function matrix. These filters are actually stored as impulse-response matrices, and the transpose
operation is simply a re-organization of the components of the impulse-response matrices. The mechanics
of taking a filter transpose are discussed later in Section C. As with the SISO linear case, convergence
using the RLS algorithm occurs within twice as many iterations as there are taps in the longest impulse
response in the MIMO controller filter C . This is an improvement of many orders of magnitude when
compared with the other known cited methods.

B. Disturbance Canceling

We can adapt a disturbance canceler for a linear MIMO system using the same equation as for the SISO
case, and adopting the transpose method used when adapting C for the MIMO system. The block diagram
of the adaptation method is shown in Figure 5(b).

C. Transpose of Transfer Functions

In order to train the controller, notice that we need the transposed filter [ P̂(z)]T . The weight matrix for
this filter is not the same as [W P̂]T . To find the correct weight matrix for an arbitrary transposed filter
[H(z)]T consider first the weight matrix for some arbitrary filter [H(z)]. For the sake of example we will
assume [H(z)] has two inputs, two outputs and N = 4 so that the impulse response is five samples long.
Then, the H -matrix has entries as shown in Fig. 6

There are four impulse responses embedded in this matrix: h11, h12, h21 and h22. When we take the
z-transform and make the transfer-function matrix for this filter, we get

[H(z)] =

[
H11(z) H12(z)
H21(z) H22(z)

]
which has transpose [H(z)]T =

[
H11(z) H21(z)
H12(z) H22(z)

]
.

So, the transpose of the weight filter has entries as shown in Fig. 7 on the following page.
Computing the transpose of the filter involves a simple reordering of the weights in the weight matrix

of the filter. The MATLAB code in Appendix E, for example, performs the transpose operation.
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ûk
yk
yk
yk
ŷk
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ỹk
d̃k
dk

e(sys)
k

e(mod)
k
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D. Wiener Solution

There are three cases to consider when computing the Wiener solution for the controller weight matrix
when the plant is linear MIMO. The first is when the plant has more outputs than inputs. The second is
where the plant has fewer outputs than inputs. The third is when the plant has an equal number of outputs
and inputs.

An important mathematical result relating to z-transforms of impulse response matrices must first be
developed. Assume that white noise is filtered by a filter with transfer function H(z). The z-transform of
the autocorrelation of the filter output is then 8yy(z) = H(z−1)H(z)T . Since autocorrelation functions
are symmetric, then we have the important results which hold for any H(z)

H(z−1)H(z)T = H(z)H(z−1)T

and (now letting the filter be H(z)T )

H(z−1)T H(z) = H(z)T H(z−1).

More outputs than inputs: If the plant has more outputs than inputs, then P̂(z)T P̂(z) is generally invert-
ible. From the Wiener results in Appendix A and the block diagram in Fig. 3 on page 3 we have that the
solution for the controller will be

P̂(z−1)T8nn(z)P̂(z)C(z) = P̂(z−1)T8nn(z)M(z).

Multiply on the left by
[
P̂(z−1)T P̂(z−1)

]−1
P̂(z−1)T P̂(z). Assume that the modeling noise is white such

that 8nn(z) = I . Then,

[
P̂(z−1)T P̂(z−1)

]−1
P̂(z−1)T P̂(z) P̂(z−1)T P̂(z)C(z) =

[
P̂(z−1)T P̂(z−1)

]−1
P̂(z−1)T P̂(z) P̂(z−1)T M(z).

Using the identities above, we can replace P̂(z) P̂(z−1)T with P̂(z−1)P̂(z)T on the left- and right-hand
sides. When terms cancel we are left with

P̂(z)T P̂(z)C(z) = P̂(z)T M(z)

C (opt)(z) =
[
P̂(z)T P̂(z)

]−1
P̂(z)T M(z),

which is the pseudo-inverse of P̂(z) in cascade with the reference model. This is the desired solution
(although it would be better if the solution had [P(z)T P(z)]−1 P(z)T M(z) instead).
More inputs than outputs: If the plant has more inputs than outputs, then some matrix cancellations in
the above method will no longer be valid. Instead, P̂(z) P̂(z)T will generally be invertible. Again, we
must start with

P̂(z−1)T8nn(z)P̂(z)C(z) = P̂(z−1)T8nn(z)M(z).
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Assume that 8nn(z) = I . Multiply on the left by
[
P̂(z−1)P̂(z−1)T

]−1
P̂(z−1). We are left with

P̂(z)C(z) = M(z).

We notice (by substitution) that one possible solution for C(z) is

C (opt)(z) = P̂(z)T
[
P̂(z) P̂(z)T

]−1
M(z).

This is the minimum-norm solution. Generally, when there are more inputs than outputs there will be
many solutions to C(z) which all achieve zero error. The minimum-norm solution is one of these, and
uses the least amount of control effort (in a mean-squared sense). It is not a guaranteed solution, however.
Equal number of inputs and outputs: If the plant has an equal number of inputs and outputs, and if the
plant is invertible, then both solutions become

C (opt)(z) = P̂(z)−1 M(z).

We note that all three Wiener solutions are based on the inverse of the plant model and not on the inverse
of the plant. So, the efficacy of this method is dependent on an accurate plant model. Research must be
done to see if it can be extended, to be independent of an accurate plant model.

E. Matrix RLS

The Recursive Least Squares (RLS) algorithm is a fast and efficient method for adapting the weights of
an adaptive linear filter [10]. Many other fast algorithms are available, and some posses better numerical
and convergence properties [12]. Many are as fast as RLS, but none appear to be faster in terms of number
of training iterations required to achieve convergence. So, for the sake of example, a form of RLS called
matrix-RLS is used here. Matrix-RLS is used to adapt a linear MIMO filter, whereas regular RLS adapts
a SISO filter.

Matrix-RLS may be derived in the same way as standard RLS [10]. The steps are omitted here. The
final form of a numerically-stable version of the algorithm is shown in Algorithm 1.

Algorithm 1 Matrix-RLS algorithm.

π(k) = X (k)T8−1
xx (k − 1)

r(k) =
1

λ+ π(k)X (k)
K (k) = r(k)π(k)

ζ(k) = d(k)− W(k − 1)X (k)

W(k) = W(k − 1)+ ζ(k)K (k)

8−1
xx (k) =

1

λ
tri

{
8−1

xx (k − 1)− π(k)T K (k)
}
,

where the tri() operator takes the upper or lower triangular part of a matrix and replicates it in the lower
or upper part to preserve symmetry. λ is a forgetting constant, and is set slightly less than 1. X (k) is the
tap-delay-line input to the filter at time k, such that the filter output is W(k)X (k). 8−1

xx (k) is initialized to
a diagonal matrix with large (order of 10,000) entries.
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x, y, z = position coordinates
p, q, r = roll, pitch and yaw rates
φ, θ,ψ = roll (bank), pitch and yaw angles
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ũk
ûk
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Fig. 8. Aircraft yaw-rate and bank-angle control.

F. Convergence

There are two convergence issues to deal with. First, convergence of the plant model, and then conver-
gence of the controller/disturbance canceler. The plant model needs to converge before either the controller
or disturbance canceler can converge. Here we assume that matrix-RLS is used to adapt the two filters.

According to Haykin, RLS converges in two times as many iterations as there are taps in the FIR
filter [10]. So, for example, if a matrix-FIR filter has five taps per sub-filter, convergence is achieved in
about ten iterations. Similarly, convergence of the controller or disturbance canceler occurs in about twice
as many iterations as there are taps in each filter. However, since the controller- and canceler adaptation
process is done offline, it can be done quickly in the background and entire system convergence occurs
can occur in about twice as many iterations as there are taps in the plant-model FIR filter.

A note re. using matrix-LMS. The convergence speed of matrix-LMS is related to the eigenvalue spread
of the autocorrelation matrix R of the filter input. The eigenvalue spread in the R matrix in the example
presented next is fourteen orders of magnitude! Matrix-LMS converges very slowly.

V. EXAMPLE

Two aspects of flight control for a Boeing 747 aircraft (see Figure 8) were selected to demonstrate
linear, MIMO control.4 The dynamics of the airplane have been approximated by a linear model around
an equilibrium point. In the case at hand, the equilibrium “point” is level flight at 40,000 ft and a nominal
forward speed of Mach 0.8 (774 ft/sec). The resulting linearized equations of motion are eighth-order, but
they may be separated into two fourth-order sets representing the perturbations in longitudinal and lateral
motion. Here, we wish to control the aircraft’s yaw-rate (r ) and bank-angle (φ).

The dynamics of the system are most compactly represented in state-space form. When converted to
discrete-time, we define

uk =

[
Rudder angle in degrees
Aileron angle in degrees

]
, yk =

[
Yaw rate, rk, in radians/second
Bank angle, φk, in radians

]
,

and,

xk =




Sideslip angle, βk, in radians
Yaw rate, rk, in radians/second
Roll rate, pk, in radians/second
Bank angle, φk , in radians


.

4 The primary reference for this section is [13, pp. 684–93]. The author in turn references the seminal but elusive source [14]. The
augmented equations for MIMO control were obtained from [15, pp. 23–35].
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Then,

xk+1 = Ad xk + Bduk

yk = Cd xk,

where,

Ad =




0.8876 −0.3081 0.0415 0.0198
0.2020 0.3973 −0.0046 0.0024

−1.2515 0.5106 0.7617 −0.0139
−0.3313 0.1510 0.4407 0.9976


, Bd =




0.4806 −0.0013
−1.5809 0.3887

0.0599 4.8390
0.0390 1.2585


.

The output matrix Cd was chosen to be either

Cd =
[

0 1 0 0
]

Cd =

[
0 1 0 0
0 0 0 1

]

Cd =




0 1 0 0
0 0 0 1
0 0 1 0




depending on whether the plant had 1, 2 or 3 outputs.
The reference command to be tracked is generated independently for each output. The reference com-

mand for the desired yaw-rate is a first-order Markov process generated by filtering i.i.d. uniform random
variables with maximum value 0.03 using a one-pole filter whose pole is at z = 0.9. The reference
command for the desired bank angle is a first-order Markov process generated by filtering i.i.d. uniform
random variables with maximum value 0.12 with a one-pole filter whose pole is at z = 0.9.

The primary disturbance experienced by the dynamics of the airplane are those induced by bursts of
wind. It is assumed here that the nominal wind values are incorporated into the dynamic model of flight,
and that gusts around that nominal value are the disturbances. The state of the airplane, xk , is affected
directly by the wind. So, the full discrete-time model of the airplane dynamics, with disturbance, is

xk+1 = Ad [xk + distk] + Bduk

yk = Cd xk,

Furthermore, it is assumed that the wind gusts occur as planar fronts and thus do not affect the yaw-
rate, roll-rate or bank-angle directly. Instead, the sideslip angle is directly affected by the wind, and the
other state-variables are affected indirectly through the dynamical relationship between themselves and
the sideslip angle. If we model the wind in the lateral direction, then the sideslip angle is perturbed by

1βk = atan

(
wind speed

airplane speed

)
.

The model for generating a wind-speed time series is based on data presented in reference [16]. An
approximation is made to the autocorrelation function of the cited paper. The power spectral density of
wind velocity was calculated from the autocorrelation function, and was found to be

8( f ) =
3950

1 + (20π f )2
.
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ŵk
v̂k

Sensor
Noise, vkrkukuk

ũk
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ûkykykyk
ŷk
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An FIR filter was designed using a weighted least-squares optimization algorithm to produce this power
spectral density given an input stream of i.i.d. uniform random numbers with maximum magnitude 1. A
sample wind time-sequence is shown in Figure 9. The maximum absolute wind speed is in the neighbor-
hood of 20 feet per second, so the maximum perturbation to βk is around 0.03 radians.

Note: simulations in reference [3] considered two-input two-output control. The controller, trained with
the BPTM method, converged in about 108 iterations. The present method converges in about 200–400
iterations!

Tracking results (in the absence of added disturbance) for the three cases simulated are presented in
Fig. 10. Tracking is essentially perfect when there are more plant inputs than outputs, and is also very
good when there are an equal number of plant inputs and outputs. When there are more plant outputs
than inputs, it becomes impossible to get perfect tracking in general, and the controller adapts to find the
solution which minimizes the mean-square output error.

Learning curves for the three cases are presented in Fig. 11 on the following page. We see convergence
in all cases within 200–400 iterations.
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Fig. 12. Disturbance canceling for MIMO system.

A. Disturbance Canceling

Disturbance canceling was tested for the MIMO system, and results are plotted in Fig. 12. The figure
shows the squared-norm of the system error plotted versus iteration. Disturbance was present at all times,
and the (trained) disturbance canceler was turned “on” at time 1000. As can be seen, the disturbance
canceler removes essentially all of the disturbance, resulting in near-perfect tracking even in the presence
of disturbance.

VI. CONCLUSIONS

The new method presented in this report for adapting controllers and disturbance cancelers for linear
MIMO plants works very well and is very fast. Items on the “wish list” include: Finding a way to make
the controller unbiased by plant modeling errors, and adding constraints to the control effort produced by
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the controller.

APPENDICES

A. MATRIX MIMO WIENER SOLUTION

The Wiener solution for adaptive filtering when the filter is a linear MIMO system is outlined in this
appendix. First, the unconstrained solution is presented, followed by the causal solution and an application
to a common structure.

A. The Unconstrained MIMO Wiener Solution

The two-sided Wiener solution is developed here for a MIMO filter. The input to the filter is the vector
signal [xk] and the output of the filter is the vector signal

[
yk

]
. The desired response must have the same

dimension as
[
yk

]
; it is labeled [dk].

The MIMO filter has a transfer-function matrix, such that (for an example 2 × 2 system)
[

Y1(z)
Y2(z)

]
=

[
H11(z) H12(z)
H21(z) H22(z)

] [
X1(z)
X2(z)

]
.

In other words,

Y1(z) = H11(z)X1(z)+ H12(z)X2(z)

Y2(z) = H21(z)X1(z)+ H22(z)X2(z).

In the time domain, we have

y1[k] = h11[k] ∗ x1[k] + h12[k] ∗ x2[k]

y2[k] = h21[k] ∗ x1[k] + h22[k] ∗ x2[k].

This can be written as using summations

y1[k] =

∞∑

m=−∞

h11[m]x1[k − m] +

∞∑

m=−∞

h12[m]x2[k − m]

y2[k] =

∞∑

m=−∞

h21[m]x1[k − m] +

∞∑

m=−∞

h22[m]x2[k − m].

The summations may be combined such that

y1[k] =

∞∑

m=−∞

(h11[m]x1[k − m] + h12[m]x2[k − m])

y2[k] =

∞∑

m=−∞

(h21[m]x1[k − m] + h22[m]x2[k − m]) .

Furthermore, this can be written in matrix form: (the key to the whole proof!)

[
y1
y2

]

[k]
=

∞∑

m=−∞

[
h11 h12
h21 h22

]

[m]

[
x1
x2

]

[k−m]
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or
[
yk

]
=

∞∑

m=−∞

[hm]
[
xk−m

]
.

Now for the Wiener proof. Note that [ek] = [dk] −
[
yk

]
. We wish to minimize the expected 2-norm of

[ek]:

‖[ek]‖2 = [ek]T [ek]

= [dk]T [dk] +

∞∑

l=−∞

∞∑

u=−∞

(
[hl ]

[
xk−l

])T
[hu]

[
xk−u

]
− 2

∞∑

l=−∞

(
[hl ]

[
xk−l

])T
[dk]

= [dk]T [dk] +

∞∑

l=−∞

∞∑

u=−∞

[
xk−l

]T
[hl ]

T [hu]
[
xk−u

]
− 2

∞∑

l=−∞

[
xk−l

]T
[hl ]

T [dk] .

Each composite quantity is a scalar, so () = T r(). Furthermore T r(AB) = T r(B A) for all A ∈ C n×m

and B ∈ Cm×n .

‖[ek]‖2 = [dk]T [dk] +

∞∑

l=−∞

∞∑

u=−∞

T r
(

[hl ]
T [hu]

[
xk−u

] [
xk−l

]T
)

− 2
∞∑

l=−∞

T r
(

[hl ]
T [dk]

[
xk−l

]T
)

�
(
‖[ek]‖2

)
=

� (
[dk]T [dk]

)
+

∞∑

l=−∞

∞∑

u=−∞

T r
(

[hl ]
T [hu]

�
([

xk−u
] [

xk−l
]T

))

−2
∞∑

l=−∞

T r


[hl ]

T �


 [dk]

[
xk−l

]T

︸ ︷︷ ︸
φdx (−l)=φxd (l)T







= T r ([φdd(0)])+
∞∑

l=−∞

∞∑

u=−∞

T r
(
[hl ]

T [hu] [φxx (l − u)]
)
− 2

∞∑

l=−∞

T r
(
[hl ]

T [φxd(l)]
T )
.

To find the optimal filter weights, we take the derivative of
� (

‖ek‖
2) and set it to zero. The following

identities help:

∂T r(AX T B)

∂X
= B A

∂T r(AX B)

∂X
= AT BT

∂T r(AX B X T )

∂X
= AT X BT + AX B.

So,
∂

� (
‖[ek]‖2

)

∂h j
= 0 +

∂(
∑ ∑

)

∂h j
− 2

∂(
∑
)

∂h j
≡ 0.

Now,

∂(
∑
)

∂h j
=
∂T r

([
h j

]T [
φxd ( j)

]T
)

∂h j
=

[
φxd ( j)

]T
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since all of the summation terms not containing
[
h j

]
go away under the differentiation, and we let A = I

and B =
[
φxd ( j)

]T
. Also, the remaining partial may be computed for different values of summation

indices. If l 6= j and u 6= j
∂(

∑ ∑
)

∂h j
= 0.

If l = j and u 6= j then

∂(
∑∑

)

∂h j
=
∂T r

([
h j

]T
[hu]

[
φxx ( j − u)

])

∂h j
= [hu]

[
φxx ( j − u)

]
.

If l 6= j and u = j then

∂(
∑ ∑

)

∂h j
=
∂T r

(
[hl ]T

[
h j

] [
φxx (l − j)

])

∂h j
= [hl ]

[
φxx (l − j)

]T
= [hl ]

[
φxx ( j − l)

]
.

If l = j and u = j then

∂(
∑∑

)

∂h j
=
∂T r

([
h j

]T [
h j

]
[φxx (0)]

)

∂h j
=
∂T r

([
h j

]
[φxx (0)]

[
h j

]T
)

∂h j
= 2 [hl ] [φxx (0)] .

Putting all of the above together, we have

∂
� (

‖[ek]‖2)

∂h j
= 2

∞∑

l=−∞

[hl ]
[
φxx ( j − l)

]
− 2

[
φxd( j)

]T
≡ 0.

Take z-transforms of the above, realizing that the summation is a convolution,

[H(z)] [8xx (z)] = [8xd (z)]
T

[H(z)] = [8xd (z)]
T [8xx (z)]

−1 .

B. The Causal MIMO Wiener Solution

In order to use the unconstrained Wiener filter solution to find the causal Wiener filter solution, we can
use the causal part of the unconstrained solution if we first “whiten” the input to that causal filter.

We want to whiten xk and to do so we suppose that xk was generated via filtering white noise through
the filter [G(z)]. Then, (using the autocorrelation result in the next section), we can write

8xx (z) = [G(z−1)][I ][G(z)]T = [G(z−1)][G(z)]T .

Let the whitening filter be Hw(z) = [G(z)]−1. Note that if [G(z)] is minimum-phase,

8+
xx (z) = [G(z)]

8−
xx (z) = [G(z−1)].

and 8xx (z) = 8−
xx (z)8

+
xx (z)

T . Now, consider this in the system of Fig. 13 on the following page. Com-
puting the necessary correlations (see next section), we get 8zd(z) = [8+

xx (z
−1)]−1[I ][8xd (z)]. Since

z(z) is white, then8zz(z) = I . Then, the unconstrained Wiener solution for Hc(z) is [8xd(z)]T [8−
xx (z)]

−1.
The constrained Wiener solution is the causal part of Hc(z) preceded by the whitening filter, or

[H(z)]causal =
[
[8xd (z)]

T [8−
xx (z)]

−1
]
+

[
8+

xx (z)
]−1

.
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Fig. 13. System for computing causal Wiener solution.

C. Computing 8xd(z) and 8xx (z).

Many times, we must compute the quantities 8xd(z) and 8xx (z) for block diagrams of the form of
Fig. 14 on the next page. To find 8xd(z) and 8xx (z) we first compute φxd(m).

φxd(m) =
�

[xkdT
k+m]

xk =

∞∑

l=−∞

αlnk−l

dk =

∞∑

i=−∞

βi nk−i

φxd(m) =
�

[
∞∑

l=−∞

∞∑

i=−∞

αlnk−ln
T
k+m−iβ

T
i

]

=

∞∑

l=−∞

∞∑

i=−∞

αlφnn(m + l − i)βT
i .

This may be unwrapped by taking the z-transform.

8xd(z) =

∞∑

l=−∞

αl z
+l

∞∑

m=−∞

∞∑

i=−∞

φnn(m + l − i)z−(m+l−i)βT
i z−i

=

∞∑

l=−∞

[αl z
+l]

[
∞∑

i=−∞

[βi z
−i ]

∞∑

m=−∞

φT
nn(m + l − i)z−(m+l−i)

]T

=

∞∑

l=−∞

[αl z
+l]

[
B(z)8T

nn(z)
]T

= A(z−1)8nn(z)B(z)
T .

By extension,8xx (z) = A(z−1)8nn(z)A(z)T .

B. MAIN SIMULATION CODE

% =====================================================================
% Simple method for adapting a MIMO linear controller using adaptive
% inverse control. Copyright (c) 2000. Dr. Gregory L. Plett. Please
% distribute with this copyright message.
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Fig. 14. Generic adaptive structure.

% =====================================================================
clf;
numpin=2; % number of plant inputs
numpout=1; % number of plant outputs
numptap=61; % number of taps in plant model
plantsetup;
reporttype=1; % 1=tracking progress; 2=impulse responses
report=1000; % frequency of reports

maxiter=1000; % how many adaptive iterations. Convergence ~ 200.
dksave=zeros([numpout report]);
yksave=zeros([numpout report]);
eksave=zeros([1 report]);

WmT=[zeros(numpout) eye(numpout)]; % ref-model trans---a unit delay
MTin=zeros([length(WmT(1,:)) 1]); % the input to M-transpose
Min=zeros([length(WmT(1,:)) 1]); % the input to M

Pin=zeros([numpin*numptap 1]); % the input to the true plant
PHin=Pin; % the input to Phat to adapt C-transpose
PHTin=zeros([numpout*numptap 1]);% The input to Phat-transpose to adapt C-trans

numctap=71;
CCin=zeros([numpout*numctap 1]);% the input to C-copy
CTin=zeros([numpin*numctap 1]); % the input to C-transpose
WcT=zeros([numpout numpin*numctap]);% the initl weights of the ctrlr-transpose

lambda=0.9999; % the RLS forgetting factor
PCT=inv(0.0001)*eye(length(CTin));% The initial RLS inverse cov. matrix for C

i=1;
mse=0;
for iter=1:maxiter,

% get system desired response
ik=randn([numpout 1]); % random input to system
PHTin=[ik; PHTin(1:end-length(ik),1)];
xk=Wpht*PHTin;
CTin=[xk; CTin(1:end-length(xk),1)];

MTin=[ik; MTin(1:end-length(ik),1)];% shift in to M-transpose
dkt=WmT*MTin; % desired output

% update weights in C-transpose via matrix RLS
pin=CTin’*PCT;
rn=1/(lambda+pin*CTin);
kn=rn*pin;
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chin=dkt-WcT*CTin;
WcT=WcT+chin*kn;
PCT=(PCT-pin’*kn)/lambda;
PCT=triu(PCT)+triu(PCT,1)’;

Wc=ftranspose(WcT,numctap);

% Feedforward system to plot tracking
nk=randn([numpout 1]); % random input to system
CCin=[nk; CCin(1:end-length(nk),1)];
uk=Wc*CCin;
Pin=[uk; Pin(1:end-length(uk),1)];
yk=Wp*Pin;

yksave(:,i)=yk;
Min=[nk; Min(1:end-length(nk),1)];
dk=WmT*Min;
dksave(:,i)=dk;
% add plant noise here
yksave(:,i)=yk;
eksys=dk-yk; if iter>500, mse=mse+eksys’*eksys; end;
eksave(i)=eksys’*eksys;

i=i+1;
% display impulse-response graphs every 50 iterations
if (mod(iter,report)==0),
plotreport;
i=1;

end;
end;
mse/(maxiter-500)

C. PLANT SETUP CODE

% =====================================================================
% Sets up the MIMO plant
% Copyright (c) 2000. Dr. Gregory L. Plett. Please distribute
% with this copyright message.
% =====================================================================
A=[0.88763 -0.30806 0.04148 0.019846

0.20197 0.39735 -0.0046012 0.0024034
-1.2515 0.5106 0.76171 -0.013941
-0.33126 0.15104 0.44069 0.99763];

B=[0.48062 -0.0012813
-1.5809 0.38869
0.059924 4.839
0.038972 1.2585];

% Compute impulse-responses assuming two-input, three-output and use
% only the impulse-responses we need.
C=[0 1 0 0; 0 0 0 1; 0 0 1 0];
D=[0 0; 0 0; 0 0];
sysd=ss(A,B,C,D,0.5); % create state-space discrete-time system, T=0.5
H=impulse(sysd,(numptap-1)/2);% get impulse responses
h11=H(:,1,1)’; h12=H(:,1,2)’; % form individual impulse responses
h21=H(:,2,1)’; h22=H(:,2,2)’;
h31=H(:,3,1)’; h32=H(:,3,2)’;
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% create the impulse-response filter matrix
Wph=zeros([numpout numpin*numptap]);
Wph(1,1:numpin:numpin*numptap-1)=h11;
Wph(1,2:numpin:numpin*numptap)=h12;
if numpout>1,

Wph(2,1:numpin:numpin*numptap-1)=h21; Wph(2,2:numpin:numpin*numptap)=h22;
if numpout>2,
Wph(3,1:numpin:numpin*numptap-1)=h31; Wph(3,2:numpin:numpin*numptap)=h32;
end;

end;
Wp=Wph; % true plant
% create the transpose impulse-response filter
Wpht=ftranspose(Wph,numptap);

D. REPORT PLOTTING CODE

% =====================================================================
% Plots reports for the simulations
% Copyright (c) 2000. Dr. Gregory L. Plett. Please distribute
% with this copyright message.
% =====================================================================
if reporttype==1, % tracking

themse=sum(sum((dksave-yksave).^2))/report;
themse=sprintf(’The mse is: %f’,themse);
subplot(numpout,1,1);
plot(0:report-1,dksave(1,:),0:report-1,yksave(1,:));
title(themse);
if numpout>1,
subplot(numpout,1,2);
plot(0:report-1,dksave(2,:),0:report-1,yksave(2,:));
if numpout>2,

subplot(numpout,1,3);
plot(0:report-1,dksave(3,:),0:report-1,yksave(3,:));

end;
end;

elseif reporttype==2, % impulse responses
wctranspose=ftranspose(Wc,numctap);
c11=wctranspose(1,1:2:end-1); c21=wctranspose(1,2:2:end);
I11=conv(h11,c11)+conv(h12,c21);
if numpout>1,
c12=wctranspose(2,1:2:end-1); c22=wctranspose(2,2:2:end);
I12=conv(h11,c12)+conv(h12,c22);
I21=conv(h21,c11)+conv(h22,c21);
I22=conv(h21,c12)+conv(h22,c22);
if numpout>2,

c13=wctranspose(3,1:2:end-1); c23=wctranspose(3,2:2:end);
I13=conv(h11,c13)+conv(h12,c23);
I23=conv(h21,c13)+conv(h22,c23);
I31=conv(h31,c11)+conv(h32,c21);
I32=conv(h31,c12)+conv(h32,c22);
I33=conv(h31,c13)+conv(h32,c23);

end;
end;
subplot(numpout,numpout,1); stem(0:length(I11)-1,I11); title(’I11’);
if numpout>1,
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subplot(numpout,numpout,2);
stem(0:length(I12)-1,I12); title(’I12’);
subplot(numpout,numpout,numpout+1);
stem(0:length(I21)-1,I21); title(’I21’);
subplot(numpout,numpout,numpout+2);
stem(0:length(I22)-1,I22); title(’I22’);
if numpout>2,

subplot(numpout,numpout,3);
stem(0:length(I13)-1,I13); title(’I13’);
subplot(numpout,numpout,6);
stem(0:length(I23)-1,I23); title(’I23’);
subplot(numpout,numpout,7);
stem(0:length(I31)-1,I31); title(’I31’);
subplot(numpout,numpout,8);
stem(0:length(I32)-1,I32); title(’I32’);
subplot(numpout,numpout,9);
stem(0:length(I33)-1,I33); title(’I33’);

end;
end;

elseif reporttype==3, % impulse responses of Wc
wctranspose=ftranspose(Wc,numctap);
c11=wctranspose(1,1:2:end-1); c21=wctranspose(1,2:2:end);
if numpout>1,
c12=wctranspose(2,1:2:end-1); c22=wctranspose(2,2:2:end);
if numpout>2,

c13=wctranspose(3,1:2:end-1); c23=wctranspose(3,2:2:end);
end;

end;
subplot(2,numpout,1); stem(0:length(c11)-1,c11); title(’c11’);
subplot(2,numpout,numpout+1); stem(0:length(c21)-1,c21); title(’c21’);
if numpout>1,
subplot(2,numpout,2); stem(0:length(c12)-1,c12); title(’c12’);
subplot(2,numpout,numpout+2); stem(0:length(c22)-1,c22); title(’c22’);
if numpout>2,

subplot(2,numpout,3); stem(0:length(c13)-1,c13); title(’c13’);
subplot(2,numpout,numpout+3); stem(0:length(c23)-1,c23); title(’c23’);

end;
end;

elseif reporttype==4, % impulse responses of Wv
WvT=ftranspose(Wv,numctap);
c11=WvT(1,1:2:end-1); c21=WvT(1,2:2:end);
if numpout>1,
c12=WvT(2,1:2:end-1); c22=WvT(2,2:2:end);
if numpout>2,

c13=WvT(3,1:2:end-1); c23=WvT(3,2:2:end);
end;

end;
subplot(2,numpout,1); stem(0:length(c11)-1,c11); title(’v11’);
subplot(2,numpout,numpout+1); stem(0:length(c21)-1,c21); title(’v21’);
if numpout>1,
subplot(2,numpout,2); stem(0:length(c12)-1,c12); title(’v12’);
subplot(2,numpout,numpout+2); stem(0:length(c22)-1,c22); title(’v22’);
if numpout>2,

subplot(2,numpout,3); stem(0:length(c13)-1,c13); title(’v13’);
subplot(2,numpout,numpout+3); stem(0:length(c23)-1,c23); title(’v23’);

end;
end;
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end;
drawnow,

E. FILTER TRANSPOSE CODE

function fout=ftranspose(fin,numtaps);
% This function computes the filter transpose of the input
% MIMO linear filter. The input filter is a matrix of
% dimension (numout)x(numin*numtaps).
%
% e.g. The input filter has two outputs, three inputs and
% two taps.
%
% +--------+--------+--------+--------+--------+--------+
% | f11(1) | f12(1) | f13(1) | f11(2) | f12(2) | f13(2) |
% +--------+--------+--------+--------+--------+--------+
% | f21(1) | f22(1) | f23(1) | f21(2) | f22(2) | f23(2) |
% +--------+--------+--------+--------+--------+--------+
%
% The algorithm first reshapes into a 3-D matrix:
%
% +--------+--------+--------+ +--------+--------+--------+
% | f11(1) | f12(1) | f13(1) | | f11(2) | f12(2) | f13(2) |
% +--------+--------+--------+ +--------+--------+--------+
% | f21(1) | f22(1) | f23(1) | | f21(2) | f22(2) | f23(2) |
% +--------+--------+--------+ +--------+--------+--------+
%
% Then, it reorders the dimensions:
%
% +--------+--------+ +--------+--------+
% | f11(1) | f21(1) | | f11(2) | f21(2) |
% +--------+--------+ +--------+--------+
% | f12(1) | f22(1) | | f12(2) | f22(2) |
% +--------+--------+ +--------+--------+
% | f13(1) | f23(1) | | f13(2) | f23(2) |
% +--------+--------+ +--------+--------+
%
% Then it puts everything back together:
%
% +--------+--------+--------+--------+
% | f11(1) | f21(1) | f11(2) | f21(2) |
% +--------+--------+--------+--------+
% | f12(1) | f22(1) | f12(2) | f22(2) |
% +--------+--------+--------+--------+
% | f13(1) | f23(1) | f13(2) | f23(2) |
% +--------+--------+--------+--------+

%
% Copyright (c) 2000. Dr. Gregory L. Plett. Please distribute
% with this copyright message.

%
[numout numin]=size(fin); numin=numin/numtaps;
fout=reshape(permute(reshape(fin,[numout,numin,numtaps]), ...

[2 1 3]), [numin numout*numtaps]);
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