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ABSTRACT

The detection and disposal of anti-personnel landmines is one of the most di�cult and intractable problems

faced in ground con
ict. This paper �rst presents current detection methods which use a separated aperture

microwave sensor and an arti�cial neural-network pattern classi�er. Several data-speci�c pre-processing methods

are developed to enhance neural-network learning. In addition, a generalized Karhunen-Lo�eve transform and

the eigenspace separation transform are used to perform data reduction and reduce network complexity. Highly

favorable results have been obtained using the above methods in conjunction with a feedforward neural network.

Secondly, a very promising idea relating to future research is proposed that uses acoustic modulation of the

microwave signal to provide an additional independent feature to the input of the neural network. The expectation

is that near-perfect mine detection will be possible with this proposed system.

Keywords: landmine detection, neural network, pattern classi�cation, feature selection, microwave sensor,

acoustic sensor

1. INTRODUCTION

Anti-personnel landmine detection is a problem of signi�cant military, economic and humanitarian concern.

Not only do landmines pose a deterrent to military activity during con
ict, they also remain lethal long after

that con
ict is over. The casualty statistics are horrifying; eighty percent of the victims of anti-personnel mines

are civilians, many of whom are children.1 The number of such mines currently in place is estimated at over

100 million, and is increasing at the rate of one half to one million mines per year. There is great motivation

to research new countermine systems. Current anti-personnel land mines cost between $3{$25 per mine and

clearance methods cost between $300{$1000 per mine removed.2 A mine detection system which will operate

with a high degree of accuracy while being simple enough to deploy at low cost is needed.
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One of the problems faced by the countermine system is that newer mines contain very little metal, and thus

it is not feasible to use conventional metal detectors to locate them. A more sophisticated approach is presented

here, where neural networks are trained to detect simulated land mines using data collected from a mine lane

facility located at Ft. Belvoir, VA. This data consists of a set of measurements made with a Separated Aperture

Sensor operating in the \waveguide near cuto�" mode.3 Previous work has shown that neural-network pattern

classi�ers can successfully detect anti-tank mines,3{5 and the present work addresses the much more di�cult

problem of detecting smaller anti-personnel mines.

Emphasis is placed on the processing of the sensor data for use with a neural-network classifer in order to

maximize detection rates while minimizing false-alarm rates. The structure and type of data used for the input

to the network is explained and justi�ed. Three methods, which mitigate certain undesirable and uncontrollable

properties of the training data set, are discussed. These are: data 
attening, outlier removal, and data balancing.

These procedures permit better neural-network learning and improved generalization. In addition, a generalized

Karhunen-Lo�eve transform and the eigenvalue separation transform are explored as e�ective preprocessing meth-

ods to perform data reduction and increase mine detectability. The performance of arti�cial neural-network mine

detectors incorporating these methods are summarized. Finally, a novel feature to be introduced to the data

gathering aparatus is discussed.

2. SENSOR DESCRIPTION AND DATA ACQUISITION

An experimental apparatus at Ft. Belvoir was used to obtain the training and test data from a simulated mine

lane. The fundamental operating principles of the separated aperture sensor are described in references 3 and 6. A

block diagram of the measurement system is shown in Fig. 1. A Hewlett Packard 8753A Network Analyzer capable

of generating sinusoidal signals between 300 kHz and 3 GHz was attached, through an HP 85046B S-parameter

test set, to a separated aperture sensor. The sensor, located (nominally) 2" above the ground, consisted of a

transmitting aperture or horn which injected microwaves into the soil, and a receiving aperture which provided a

return signal to the Hewlett Packard equipment. For the data set used in the current work, the resonant frequency

of the horns was 1 GHz. Figure 2 shows a pictorial diagram of the sensor. The horns look like metal troughs with

the dipole antennae running longitudinally.
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HP 9000,
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Computer
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Figure 1: Block diagram of the measure-

ment setup.

Figure 2: Diagram of the microwave

horns and antennae.

Both the signal received by the \receiving" horn and the return signal picked up by the transmitting aperture

are sensed. The HP S-parameter test set automatically records the complex-valued scattering parameters or

S-parameters of the two-port network formed by the microwave horns and the earth waveguide. The tests use

continuous-wave sine waves, and standing waves were detected and used to compute the S-parameters. The horns
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were connected directly to the S-parameter test set, and the measurements were repeated �ve times and averaged

to reduce noise.

The energy radiated from a dipole antenna is transmitted in both electric and magnetic waves. It has been

found that the leakage mode which propagates across the ground surface is a TE mode wave7; the detection

mode, however, is largely transmitted through the soil over the target. There is some energy absorbed by the

target, with the strongest absorbed �eld component parallel to the dipoles.
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Figure 3: The movement of the sensor over the mine lane during data acquisition.

The mine lane facility at Ft. Belvoir was 790.5" long and 40.5" wide. Data was collected every 1.5" across

the length and width of the lane, thus forming a 527 row by 27 column grid of measurements. At each point, all

S-parameters were measured (S11,S12,S21,S22). Eleven di�erent frequencies in 40MHz intervals were used ranging

from 800MHz to 1200MHz, inclusive. At each point, the magnitude and phase component of each S-parameter

was measured for a total of 88 (4�11�2) measurements at each location in the grid. Figure 3 shows how the

sensor head was scanned over the mine lane.

Previous data sets were acquired using a wheeled cart which housed the data collection equipment. The more

recent data was collected by a system hung on an overhead rail. The measuring system was controlled at a

distance by an HP 9000 computer via optical �ber (HP-IB) link. The computer was able to move the sensor head

laterally with a worm gear control and record all measurements automatically. To move the sensor longitudinally

(from row to row), a human operator moved the apparatus the required 1.5" along the overhead rail. In addition,

the new data set was measured over a mine lane of sandy soil which included �ve di�erent mine types:

1. 6" diameter � 3" wood disk.

2. 5" diameter � 3" hard plastic disk.

3. 3.5" diameter � 3" nylon disk.

4. 6" � 6" � 3" wood block.

5. 4" � 2" \butter
y" shaped plastic and metal target.

There were a total of 114 targets: 15, 30, 12, 15 and 42 of each mine type, respectively.

3. NEURAL NETWORKS FOR PATTERN RECOGNITION

Computation by means of networks of arti�cial \neural" elements is an idea that has proven itself capable of

solving problems that would be impossible or impractical to solve by other means. For an excellent tutorial paper

on neural networks, the reader is referred to reference 8. In short, the following are valuable attributes of neural

networks which are not generally shared by other computing systems:
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� Neural networks are not programmed. Rather, they are trained to respond and perform highly re�ned tasks

for which no precise rules exist. One such task is pattern recognition (such as the discrimination of mines

in a mine�eld), in situations where no empirical or theoretical rules are known.

� Neural networks can generalize, that is, deliver accurate responses to inputs that were not presented during

training. This is a crucially important feature since no system can be trained on all possible mine and

background patterns.

� Neural networks can give very high-speed response to input stimuli, once trained, due to their inherently

parallel nature.

� Neural networks can be continually trained, keeping up with changing input environments.

Neural networks are interconnected structures of simple processing elements which crudely model the function

of a biologic neuron. Each arti�cial neuron (hereafter referred to simply as neuron) has the composition shown

in Fig. 4. Internally, the scalar product of the input vector� and a weight vector is computed, and the output is a

non-linear function of this scalar product: out = F (X �W ). In our work, F (�) = tanh(�). By modifying the value

of the weight vector, di�erent output functions can be realized.
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Figure 4: Structure of a neuron.
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Figure 5: Neural-network structure.

By combining many of these simple neurons in a layered network, where one element of the input vector of each

neuron in a layer is connected to the output of all neurons on the previous layer, a very powerful computational

tool is achieved. This structure is show in Fig. 5. It has been shown by Kolmogorov that such a network with a

single hidden layer, and a su�cient number of neurons is capable of computing (with some set of weight vectors)

any continuous nonlinear function. Thus, for example, it is able to compute a discriminant function used for

pattern recognition.

To be useful, we need to be able to compute the weight vectors which can be used to create the pattern

discrimination function. Several algorithms exist for this purpose, the most popular of which is the \Backpropa-

gation" algorithm. This algorithm requires a set of data which includes the input patterns and known classes for

each of these patterns. By iteratively presenting patterns and desired responses to the network, and updating the

weights using the backpropagation algorithm, the network learns to correctly classify the patterns in the training

set. The network is also able to generalize, and correctly classify many patterns which are not in the training set.

4. MINIMAL WINDOW

In the initial research, each training and test pattern applied to the neural network was obtained by using a

square spatial window of data from many nearby points. These spatial windows ranged in size from 5�5=25 points

to 13�13=169 points. At each point in a window, only the S11 parameter for each of a number of frequencies

�The input vector is augmented by adding a zeroth element, always equal to 1
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was included in the pattern. The decision as to whether or not a mine was actually present at the center of the

window was based on data collected over the entire window area.

Although the use of spatial windows yielded good results, their application to a practical mine detector

presents great di�culties because of their inherent operational requirements. Consequently, the spatial windows

were abandoned. Instead, each pattern applied to the neural network was obtained from data measured at a single

point. This new approach could be interpreted as the use of a minimal (1�1) window. The principal advantages

of a minimal window are:

1. Easier and faster measurements,

2. The possibility of mine detection near natural or man-made obstacles encountered in the �eld,

3. The possibility of collecting larger sets of training and test patterns by including points near the edges of

the mine lanes,

4. A reduction in the complexity of the neural network,

5. Better accommodation of irregular terrain.

A minimal window requires that each input pattern applied to the neural network be derived from measure-

ments taken from a single location. These measurements potentially include the magnitudes and phases of all four

scattering parameters at a number of frequencies. However, extensive simulation trials have indicated that little

or no performance improvement is obtained by including the phase measurements or by including measurements

at more than seven frequencies. Thus, each input pattern can be reduced to only 28 components|the magnitudes

of the four scattering parameters at the seven central frequencies.

5. DATA FLATTENING

One signi�cant deterrent to automated mine detection was found to be caused by large, step-like jumps in

magnitude which periodically occur between successive rows of a data set. Figure 6 shows one example jump in

the 800 MHz S11 data between rows 414 and 415.

It is thought that these jumps are caused by a change in the ambient temperature of the mine lane from one

day to the next. At the beginning of the day, the temperature would be signi�cantly di�erent from the evening

before, and a jump would occur between rows in the data. In addition to jumps, there is a signi�cant downward

slope in the data, which means that even a short lunch break could be the cause of a jump in the data (as

evidenced by some jumps \down"). Unfortunately, not all of these jumps are detectable or removable.

0
5

10
15

20
25 384

389
394

399
404

409
414

419

-2
-1.5

-1
-0.5

0
0.5

col
row

Figure 6: Un
attened data.
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Figure 7: Flattened data.
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The jumps are arti�cial in the sense that they would not occur in a �eld system searching for mines. Fur-

thermore, it is hypothesized that the jumps decrease the network's performance since many di�erent signal levels

arti�cially correspond to mine patterns. Therefore, it is desirable to remove the jumps from the data if possible.

A preprocessing function attempts to eliminate the jumps. First, the mean and standard deviation of both the

magnitude and phase components of each data sety are computed. Next, the average magnitude and phase value

for each row of data are computed. If the di�erence in the average of either the magnitude or phase between two

successive rows is greater than one standard deviation of the data set, a jump is hypothesized to have occurred

at this location. One further restriction is used to distinguish between jumps and true high-variance changes in

the data. Once a jump is postulated to have occurred, it is veri�ed by checking that all the columns change value

in the same direction across the jump.

The ramps, and thus the jumps at the ramp edges, are removed as follows: for each interval of data between

two jumps a linear regression calculation of the best least squares �t of a line to the column-averaged data is

made. This is the approximation of the \ramp" experienced during measurement. This line is extended over all

of the columns to form a plane, and is subtracted out of the data.

For example, the 800 MHz S11 data �le has an original average row magnitude as displayed in Fig. 8. Many

jumps are clearly evident; consider the one between rows 414 and 415 (this is the same jump as in Fig. 6). When

the jumps are removed using this method, the new average row magnitude is as shown in Fig. 9. Looking at the

data in three-dimensional format (Fig. 7) we see that the jump has been removed.
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attened average row magnitudes.
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Figure 9: Flattened average row magnitudes.

6. OUTLIER REMOVAL AND BALANCED DATA SETS

The supervised learning of a neural network requires the association of a desired response with each training

and test pattern. An assignment of a desired response was possible for each tested location in the mine lane

because the size, orientation, and center positions of the mines were known. At each location used to measure

a training pattern, a positive response was assigned if a mine overlapped the 1.5"�1.5" grid square with that

location at its center. A negative desired response was assigned if the grid square was not overlapped by a mine.

A training or test pattern with a positive desired response is called a mine pattern, and one with a negative

desired response is called a background pattern.

The generalization capability of neural networks can be impaired by over�tting noisy training patterns. The

separating surface generated by a neural-network classi�er may exhibit excessive 
uctuations rather than the

smooth boundary needed for good generalization. To remove the statistical outliers which cause the over�tting

yThe term \data set" here refers to 527�27 magnitude and phase measurements made for one S parameter and frequency combi-

nation.
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from the training set, two approaches may be considered. In the �rst approach, vector quantization or some

other mathematical clustering technique is used to �nd anomalous patterns and then either remove them from

the training set or suppress their in
uence on the separating surface. The second approach entails an analysis of

the physical conditions that may cause certain patterns to be outliers. Both methods were pursued in this work,

with the �nding that the much simpler second method consistently produced better results. Details of this latter

approach are presented here.

Outliers are most likely to be generated when the sensor is placed near the edge of a mine, primarily because

of the potential multipath e�ects. For example, at a mine boundary, a negative desired response may be assigned

based on the sensor position, even though the training pattern is much more typical of a mine pattern or is

much di�erent from the other training patterns. If all the training patterns measured near mine edges are

regarded as potential outliers and are removed from the training sets, one would expect improved neural-network

generalization.

To eliminate potential outliers, the pattern measured at a point was retained in the training set only when

the four nearest surrounding points had the same desired response. Along the edges and corners of the mine

lane, a missing neighbor was excluded from the requirement. This method of removing outliers is called the

four-nearest-neighbor outlier removal method. More nearest neighbors can be included in the criterion, which

leads, for example, to the eight-nearest-neighbor method.

An immediate problem resulting from the use of the nearest-neighbor methods was that the number of mine

patterns was signi�cantly reduced, thereby impairing the generalization capability of the neural network. To

prevent this problem, only potential background patterns were subjected to the nearest-neighbor methods. All

mine patterns were retained in the training set.

The scarcity of training patterns measured in the vicinity of mine edges may cause a mine detector to be

insensitive to the presence of a mine when the sensor is placed above the edge of a mine. However, in a practical

implementation, the mine detector will probe the central part of the mine at some time during the detection

process. Therefore, the exclusion of statistical outliers will not degrade a practical implementation.

The backpropagation algorithm used for neural-network training converges very slowly, if at all, for binary

classi�cation problems in which the bulk of the training patterns belong to a single class. In the presence of such

a data imbalance, one approach to accelerating the convergence is to modify the backpropagation algorithm.9

A much simpler approach, which was adopted, is to arti�cially create a balanced training set of approximately

equal numbers of mine patterns and background patterns. The balanced training set is created by replicating

each pattern in the smaller class, the class of mine patterns, a su�cient number of times. As a result, the mine

and background patterns are presented to the neural network with approximately the same frequency during the

training phase. The use of a balanced training set together with the nearest-neighbor outlier removal method

produced a substantial improvement in the simulated performance of the mine detector relative to its performance

using the original imbalanced set.

7. THE GENERALIZED KARHUNEN-LOEVE TRANSFORM

The Karhunen-Lo�eve (KL) transform10 is a linear transformation of the form:

Y = A
T
X; (1)

where A is the orthonormal transformation matrix, andX is a k-dimensional input pattern vector. The motivation

behind using this transformation on the mine lane data is twofold. First, the pattern space may be transformed

in such a way that a network is more capable of separating the mine patterns from the background patterns.

Secondly, data reduction can be achieved, that is, we can compute Ym = A
T
mX where Am contains the �rst m � k

columns of A, and Ym has the resulting dimension m. Generally, better separation and lower dimensionality can

be attained at the same time, and the data reduction is achieved without a signi�cant loss of \energy" from the
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input data, and thus without a signi�cant loss of performance. This data reduction will result in faster training

and faster and more compact network realizations.

For the KL transform, the matrix A is set to be the modal matrix of X . This matrix contains, as its columns,

the eigenvectors of the covariance matrix of pattern vectors. The columns are ordered by descending eigenvalue,

and in order to maximize the energy retained by the transformation, we retain those columns corresponding to

the largest eigenvalues.

For pattern recognition, though, the metric we should use is not that of maximizing the preserved energy of the

transformation, but rather maximizing the average distance between patterns of the two classes. Toward this end,

we have generalized the concept of the KL transform such that A contains the eigenvectors of the modal matrix

of background patterns only. This transform then produces components of each pattern of the two classes in such

a way that the components of one class have a larger average energy in certain directions than the components of

the other class. In principle, the correlation matrix calculated from only the mine patterns could be used instead,

but this approach was not adopted because of the relative scarcity of mine patterns and the consequent potential

inaccuracy in the computations.

8. THE EIGENSPACE SEPARATION TRANSFORM

The eigenspace separation (ES) transform11 allows one to reduce the neural-network size while enhancing

its generalization accuracy as a binary classi�er. The transform projects each training or test pattern into an

orthogonal subspace and thereby reduces the dimensionality of the input vector applied to the neural network. The

generalization improvement is possible because the orthogonal projection transforms the two classes of patterns in

such a way that the vectors of one class tend to have an average length greater than those of the other class. The

KL transform preserves information about the inputs in the sense of minimizing the mean square error. The ES

transform preserves and makes more accessible the information that is most relevant to a classi�er: information

that allows separation of data clusters.

The calculation of the transformation matrix U proceeds as follows.

1. Compute the k � k matrix,

M̂ =
1

N1

N1X

i=1

X1iX
T
1i �

1

N2

N2X

i=1

X2iX
T
2i; (2)

where X1i is mine pattern i, N1 is the number of mine patterns, X2i is background pattern i, and N2 is the

number of background patterns.

2. Calculate the eigenvalues of M̂ , �i, i = 1; 2; : : : ; k.

3. Calculate the sum of the positive eigenvalues

Ep =

kX

i=1

�i>0

�i; (3)

and the sum of the absolute values of the negative eigenvalues

En =

kX

i=1

�i�0

j�ij: (4)

4. (a) If Ep > En, then calculate all m orthonormal eigenvectors that are associated with the positive

eigenvalues of M̂ . Use these eigenvectors as the columns of the k �m matrix U .
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(b) If En > Ep, then calculate all m orthonormal eigenvectors that are associated with the negative

eigenvalues of M̂ . Use these eigenvectors as the columns of the k �m matrix U .

(c) If Ep = En, then either subset of orthonormal eigenvectors can be used in constructing U . In general,

choose the smaller subset if possible.

After the matrix U is constructed, Yi = U
T
Xi is computed for each pattern Xi in the training and test data

sets. Then each Yi is applied to the neural network.

9. NEURAL NETWORK ARCHITECTURE AND RESULTS

This section summarizes the performance achieved using a backpropagation neural network for land mine

detection. The e�ect of modifying some of the variable factors in this system are discussed. Some of the relevant

result tables are given here and others are available in reference 12.

Several di�erent types of network architecture were investigated. These include: fully connected feedforward

networks, partially connected or bottlenecked networks, and recurrent networks. The recurrent networks were

found to be too computationally intensive during training to be very useful.5 The bottlenecked networks were

studied in an attempt to reduce the number of weights necessary in the network. However, the generalized KL

and ES transforms provided superior methods. Therefore, a fully connected feedforward neural network was

considered the best choice for this work.

In addition to the interconnectivity, the size of the network was also studied. It was found that a three-layer

(two hidden layers of neurons and one output layer) network gave the best results. A two-layer network had

di�culty modeling the complex relationship between the input signals and the classi�cation output, and a four-

layer network was unnecessarily complex. Through simulation, the optimum number of neurons for each layer

was established. Networks with eight neurons in the �rst hidden layer, three neurons in the second hidden layer,

and one neuron in the output layer consistently showed good results.

From the 88 di�erent measurements taken at each spatial location in the mine lane, 28 components were

determined to be the most useful and important. These were the magnitude components of all four S-parameters

obtained at the seven frequencies from 880 MHz to 1120 MHz in 40 MHz intervals.

For purposes of training and testing the neural network, the mine lane was divided into �ve approximately

equally spaced sections. The data from the �rst, middle, and last sections were used for training, and the second

and fourth sections were used only for testing, resulting in 7414 training patterns and 5886 test patterns. Because

the large number of test patterns allowed an accurate measurement of the network's generalization ability, only

the test region mine-detection statistics are used to judge the network's performance.

Preprocessing of the input data before using a neural network proved to be vital for optimum performance.

The removal of the underlying \ramp" and \jumps" in the raw data dramatically increased the performance

of mine detection. Furthermore, the deterministic removal of outliers from the training data set and balancing

the mine data to background data ratio proved to be very bene�cial. Both the four-nearest-neighbor and eight-

nearest-neighbor outlier removal methods work very well.

Both of the two transform methods used in this study, the generalized KL transform and the ES transform,

showed good results. The generalized KL transform with 16 inputs achieved the best peak performance of 100%

mine detection with only 10.2% false-positives. However, the ES transform, which used only 16 inputs, was able

to produce better average performance than the other methods. Some of these results, using the four-nearest-

neighbor outlier removal method, are given in Table 1. Averaged results are given for the training and test data

sets using 20 di�erent initial weights and the peak performance obtained. Corresponding results obtained using

the eight-nearest-neighbor outlier removal method are given in Table 2.
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Table 1: Mine detection performance comparing transform preprocessing methods using the

4-nearest-neighbor outlier removal method.

Averaged Results (20sims) Peak Performance

Transform Training Testing Training Testing

Method % TP % FP % TP % FP % TP % FP % TP % FP

None [28/28] 99.2 10.4 96.5 12.2 100.0 8.7 100.0 11.4

KL [28/28] 99.4 8.8 95.9 11.2 100.0 8.7 97.9 9.8

KL [16/28] 98.4 11.3 96.0 13.2 100.0 8.5 100.0 10.2

ES [16/28] 99.3 11.1 97.5 12.2 98.5 10.9 100.0 11.7

Table 2: Mine detection performance comparing transform preprocessing methods using the

8-nearest-neighbor outlier removal method.

Averaged Results (20sims) Peak Performance

Transform Training Testing Training Testing

Method % TP % FP % TP % FP % TP % FP % TP % FP

None [28/28] 99.4 10.5 97.7 12.9 100.0 8.4 100.0 9.8

KL [28/28] 99.2 9.8 98.1 12.9 98.5 7.5 100.0 9.0

KL [16/28] 98.2 11.4 97.6 13.9 98.5 10.8 100.0 15.7

ES [16/28] 98.8 11.4 97.8 13.2 100.0 8.2 100.0 9.3

When evaluating the performance of a classi�cation system, there are two important criteria: the true-positive

rate and the false-positive rate. In addition, these two rates are not independent of each other. In fact, there is a

strong correlation between the two measures and a tradeo� must be made when maximizing the performance of

the system. For the results reported in Tables 1 and 2, emphasis was placed on maximizing the mine detection

(true-positive, TP) rate. In most cases, the peak performance was perfect (100% detection was achieved in the

test region). Although this best possible detection rate was achieved, there are cases when the false-positive (FP)

rate may be undesirably high. Therefore, the question arises whether some of the detection performance can be

sacri�ced for a better false-positive rate. Some results are presented in Table 3 to illustrate this concept.

In the non-transformed case using the maximum detection criterion, the peak performance achieved was

100.0% TP with 11.4% FP. An averaged measure over 20 di�erent initial conditions resulted in 96.5% TP and

Table 3: Mine detection and false-positive tradeo�s. (non-transformed)

Averaged Results (20sims) Peak Performance

Performance Training Testing Training Testing

Criteria % TP % FP % TP % FP % TP % FP % TP % FP

Maximum Detection 99.2 10.4 96.5 12.2 100.0 8.7 100.0 11.4

95% Detection 99.8 8.4 95.8 10.2 100.0 8.8 95.8 8.0

90% Detection 99.2 7.2 92.0 8.3 98.5 6.8 91.7 6.3
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12.2% FP. However, if we use a minimum detection rate of 90% or 95% as the performance criteriaz, the results

change slightly. For both the best and averaged results, the mine detection rate and the false-positive rate

decrease. This demonstrates that the tradeo� between the true-positive detection rate and the false-positive rate

is complex. It has not been determined what kind of performance level is desirable or acceptable for practical

use. This may be best left to the user of the system.

10. FUTURE METHODS OF MINE DETECTION

We feel that the point of diminishing returns has been reached using the methodology presented thus far. In

order to proceed beyond this point, it will be necessary to discover a fundamentally new technique in either the

data-gathering or analysis processes. We propose a novel data gathering technique here.

A signi�cant enhancement of the data-gathering system will be the speci�cation of another independent feature

to add to the collected data vector. This is important because, by adding an independent dimension to the feature

vector the network is trained with, a pattern classi�cation problem that was previously not separable may become

separable, and hence be completely solvable by the network. After data has been gathered with the new system, we

hope to use the existing well developed and studied neural network techniques to realize an even more dependable

and e�ective method of detecting buried land mines.

The method under consideration adds an acoustic sensor such that both acoustic and microwave energy are

used to sense underground land mines. A strong acoustic signal is radiated by a loudspeaker located near the

surface of the earth, alongside a pair of microwave horns which transmit and receive RF signals. The mine will

resonate as a result of the acoustic �eld imposed on it, causing the surrounding soil to vibrate. These vibrations

will be a�ected strongly by discontinuities, especially hollow spots, like those present in some types of land mines,

and voids in the earth caused by mine implantation. The motion of the mine and the earth will cause a modulation

of the RF path, resulting in small changes in multipath cancelations. Consequently, the signal detected by the

receiving horn will be modulated in amplitude in accord with the level and frequency of vibration. In addition,

the RF received signal will be frequency/phase modulated due to both Doppler and multipath e�ects. The e�ects

of both amplitude and frequency modulation have potential for improving mine discrimination.

11. CONCLUSIONS

The work conducted has shown that a neural network, trained with broadband S-parameter data is able to

detect buried anti-personnel land mines with very high accuracy. Furthermore, by varying the design threshold

of the rate of desired true positives, the level of false alarms may be made arbitrarily low. Data preprocessing has

turned out to be a very important step in the detection process. By \
attening" the data to remove irregularities

produced by the measurement process, a very useful data set was obtained. From that point, either the KL

or ES transformation was used on the data to reduce the dimensionality of the input data while rotating the

underlying coordinate system such that a small network was more easily able to separate the categories of mine

and background patterns. Data balancing and the removal of statistical outliers using the four-nearest-neighbor

method further aided the network in its classi�cation ability.

Future directions in this work include the addition of an acoustic instrument to the measurement system, which

would modulate the microwaves with acoustic energy near the mines' resonant frequency, and would provide an

additional independent measurement at each spatial location, thereby reducing the uncertainty of the network's

output.

zFor these new performance criteria, all neural network results with at least a 90% or 95% TP rate were examined and the one

with the lowest FP rate was chosen as the best result.
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