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At present, the control of a dynamic system (the “plant”) is generally done by means of feedback. This paper
proposes an alternative approach that uses adaptive filtering to achieve feedforward control for both linear and
nonlinear plants. Precision is attained because of the feedback incorporated in the adaptive filtering.

The control of plant dynamic response is treated separately, without compromise, from the optimal control
of plant disturbance. All of the required operations are based on adaptive filtering techniques. Following the
proposed methodology, knowledge of adaptive signal processing allows one to go deeply into the field of adaptive
control.

In order for adaptive inverse control to work, the plant must be stable. If the plant is not stable, then
conventional feedback methods should be used to stabilize it. Generally, the form of this feedback is not critical
and would not need to be optimized. If the plant is stable to begin with, no feedback would be required.

If the plant is linear, a linear control system would generally be used. Adaptive inverse control places an
adaptive filter whose transfer function converges to the inverse or reciprocal of that of the plant in cascade with
it. A simplified schematic representation of the control scheme is shown in Fig. 1. If the controller is indeed an
inverse of the plant, the cascade of the controller and the plant will form the identity function. Any deviation
from this is considered to be controller error, and is used by an adaptive algorithm to update the controller’s
transfer function.
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Figure 1: Basic concept of adaptive inverse control.

If the plant is minimum-phase, an inverse is easily obtained. If the plant is nonminimum-phase, a delayed
inverse can be obtained. The delay in the inverse results in a delay in overall system response, but this is inevitable
with a nonminimum-phase plant. The basic idea can be extended to implement “model-reference control,” by
adapting the cascaded filter to cause the overall system response to match a pre-selected model response.

Disturbance in a linear plant, whether minimum-phase or nonminimum-phase, can be optimally controlled by
a special circuit that obtains the disturbance at the plant output, filters it, and feeds it back into the plant input.



The circuit works in such a way that the feedback does not alter the plant dynamic response. This sub-system is
illustrated in Fig. 2. A model of the plant predicts the plant output and the difference between the model output
and the plant output is the estimate of noise and disturbance at the plant output. The estimated disturbance
is filtered and combined with the command input in order to cancel the disturbance. Figure 3 shows the square
of the output error for a simulated plant. The disturbance canceler was turned on at the 5,000th sample time.
Dramatic improvement can be seen.
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Figure 2: Canceling plant noise and disturbance.
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Figure 3: Square of the residual error. Disturbance cancelling began at the 5,000th sample time.

So disturbance control and control of dynamic response can be accomplished separately. The same ideas work
for MIMO systems as well as SISO systems.

Control of nonlinear plants is an important subject that raises significant issues. Since a nonlinear plant does
not have a transfer function, how could it have an inverse? By using a cascade of a nonlinear adaptive filter with
the nonlinear plant, the filter can learn to drive the plant as if it were the plant’s inverse. This works surprisingly
well for a range of training and operating signals. Control of a dynamic response and plant disturbance can be
done. Examples and demonstrations will be presented.

These structures, coupled with simple learning algorithms, show great promise for the control of complicated
and highly nonlinear systems. Future work needs to be done to characterize system responses and to establish
the optimality of disturbance control. This is very much an open area for research.



